Mister Exam

Other calculators

Derivative of sin(3*x)/cos(3*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(3*x)
--------
cos(3*x)
$$\frac{\sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}$$
sin(3*x)/cos(3*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2     
    3*sin (3*x)
3 + -----------
        2      
     cos (3*x) 
$$\frac{3 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 3$$
The second derivative [src]
  /         2     \         
  |    2*sin (3*x)|         
9*|2 + -----------|*sin(3*x)
  |        2      |         
  \     cos (3*x) /         
----------------------------
          cos(3*x)          
$$\frac{9 \left(\frac{2 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 2\right) \sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}$$
The third derivative [src]
   /                            /         2     \\
   |                     2      |    6*sin (3*x)||
   |                  sin (3*x)*|5 + -----------||
   |         2                  |        2      ||
   |    3*sin (3*x)             \     cos (3*x) /|
27*|2 + ----------- + ---------------------------|
   |        2                     2              |
   \     cos (3*x)             cos (3*x)         /
$$27 \left(\frac{\left(\frac{6 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 5\right) \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + \frac{3 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 2\right)$$