Mister Exam

Other calculators

  • How to use it?

  • Derivative of:
  • Derivative of e^2*x Derivative of e^2*x
  • Derivative of x^sin(x) Derivative of x^sin(x)
  • Derivative of sqrt(x^2+1) Derivative of sqrt(x^2+1)
  • Derivative of 4/x^2 Derivative of 4/x^2
  • Identical expressions

  • (eighteen *sin(three x))/(cos(3x))^3
  • (18 multiply by sinus of (3x)) divide by ( co sinus of e of (3x)) cubed
  • (eighteen multiply by sinus of (three x)) divide by ( co sinus of e of (3x)) cubed
  • (18*sin(3x))/(cos(3x))3
  • 18*sin3x/cos3x3
  • (18*sin(3x))/(cos(3x))³
  • (18*sin(3x))/(cos(3x)) to the power of 3
  • (18sin(3x))/(cos(3x))^3
  • (18sin(3x))/(cos(3x))3
  • 18sin3x/cos3x3
  • 18sin3x/cos3x^3
  • (18*sin(3x)) divide by (cos(3x))^3

Derivative of (18*sin(3x))/(cos(3x))^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
18*sin(3*x)
-----------
    3      
 cos (3*x) 
$$\frac{18 \sin{\left(3 x \right)}}{\cos^{3}{\left(3 x \right)}}$$
(18*sin(3*x))/cos(3*x)^3
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      So, the result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                     2     
54*cos(3*x)   162*sin (3*x)
----------- + -------------
    3              4       
 cos (3*x)      cos (3*x)  
$$\frac{162 \sin^{2}{\left(3 x \right)}}{\cos^{4}{\left(3 x \right)}} + \frac{54 \cos{\left(3 x \right)}}{\cos^{3}{\left(3 x \right)}}$$
The second derivative [src]
    /          2     \         
    |    12*sin (3*x)|         
162*|8 + ------------|*sin(3*x)
    |        2       |         
    \     cos (3*x)  /         
-------------------------------
              3                
           cos (3*x)           
$$\frac{162 \left(\frac{12 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 8\right) \sin{\left(3 x \right)}}{\cos^{3}{\left(3 x \right)}}$$
The third derivative [src]
    /                               /           2     \\
    |                        2      |     20*sin (3*x)||
    |                   3*sin (3*x)*|11 + ------------||
    |          2                    |         2       ||
    |    27*sin (3*x)               \      cos (3*x)  /|
486*|8 + ------------ + -------------------------------|
    |        2                        2                |
    \     cos (3*x)                cos (3*x)           /
--------------------------------------------------------
                          2                             
                       cos (3*x)                        
$$\frac{486 \left(\frac{3 \left(\frac{20 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 11\right) \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + \frac{27 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 8\right)}{\cos^{2}{\left(3 x \right)}}$$