Mister Exam

Other calculators

Derivative of sin(10*x)/tan(5*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(10*x)
---------
 tan(5*x)
$$\frac{\sin{\left(10 x \right)}}{\tan{\left(5 x \right)}}$$
sin(10*x)/tan(5*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               /          2     \          
10*cos(10*x)   \-5 - 5*tan (5*x)/*sin(10*x)
------------ + ----------------------------
  tan(5*x)                 2               
                        tan (5*x)          
$$\frac{\left(- 5 \tan^{2}{\left(5 x \right)} - 5\right) \sin{\left(10 x \right)}}{\tan^{2}{\left(5 x \right)}} + \frac{10 \cos{\left(10 x \right)}}{\tan{\left(5 x \right)}}$$
The second derivative [src]
   /                               /            2     \               /       2     \          \
   |               /       2     \ |     1 + tan (5*x)|             2*\1 + tan (5*x)/*cos(10*x)|
50*|-2*sin(10*x) + \1 + tan (5*x)/*|-1 + -------------|*sin(10*x) - ---------------------------|
   |                               |          2       |                       tan(5*x)         |
   \                               \       tan (5*x)  /                                        /
------------------------------------------------------------------------------------------------
                                            tan(5*x)                                            
$$\frac{50 \left(\left(\frac{\tan^{2}{\left(5 x \right)} + 1}{\tan^{2}{\left(5 x \right)}} - 1\right) \left(\tan^{2}{\left(5 x \right)} + 1\right) \sin{\left(10 x \right)} - \frac{2 \left(\tan^{2}{\left(5 x \right)} + 1\right) \cos{\left(10 x \right)}}{\tan{\left(5 x \right)}} - 2 \sin{\left(10 x \right)}\right)}{\tan{\left(5 x \right)}}$$
The third derivative [src]
    /                                                                                                                                        /            2     \          \
    |                                                                                                                        /       2     \ |     1 + tan (5*x)|          |
    |  /                                   2                    3\                                                         6*\1 + tan (5*x)/*|-1 + -------------|*cos(10*x)|
    |  |                    /       2     \      /       2     \ |                             /       2     \                               |          2       |          |
    |  |         2        5*\1 + tan (5*x)/    3*\1 + tan (5*x)/ |             4*cos(10*x)   6*\1 + tan (5*x)/*sin(10*x)                     \       tan (5*x)  /          |
250*|- |2 + 2*tan (5*x) - ------------------ + ------------------|*sin(10*x) - ----------- + --------------------------- + ------------------------------------------------|
    |  |                         2                    4          |               tan(5*x)                2                                     tan(5*x)                    |
    \  \                      tan (5*x)            tan (5*x)     /                                    tan (5*x)                                                            /
$$250 \left(\frac{6 \left(\frac{\tan^{2}{\left(5 x \right)} + 1}{\tan^{2}{\left(5 x \right)}} - 1\right) \left(\tan^{2}{\left(5 x \right)} + 1\right) \cos{\left(10 x \right)}}{\tan{\left(5 x \right)}} + \frac{6 \left(\tan^{2}{\left(5 x \right)} + 1\right) \sin{\left(10 x \right)}}{\tan^{2}{\left(5 x \right)}} - \left(\frac{3 \left(\tan^{2}{\left(5 x \right)} + 1\right)^{3}}{\tan^{4}{\left(5 x \right)}} - \frac{5 \left(\tan^{2}{\left(5 x \right)} + 1\right)^{2}}{\tan^{2}{\left(5 x \right)}} + 2 \tan^{2}{\left(5 x \right)} + 2\right) \sin{\left(10 x \right)} - \frac{4 \cos{\left(10 x \right)}}{\tan{\left(5 x \right)}}\right)$$