Mister Exam

Other calculators

Derivative of sin(10*x)/tan(5*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(10*x)
---------
 tan(5*x)
sin(10x)tan(5x)\frac{\sin{\left(10 x \right)}}{\tan{\left(5 x \right)}}
sin(10*x)/tan(5*x)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(10x)f{\left(x \right)} = \sin{\left(10 x \right)} and g(x)=tan(5x)g{\left(x \right)} = \tan{\left(5 x \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=10xu = 10 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx10x\frac{d}{d x} 10 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1010

      The result of the chain rule is:

      10cos(10x)10 \cos{\left(10 x \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(5x)f{\left(x \right)} = \sin{\left(5 x \right)} and g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=5xu = 5 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        5cos(5x)5 \cos{\left(5 x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=5xu = 5 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        5sin(5x)- 5 \sin{\left(5 x \right)}

      Now plug in to the quotient rule:

      5sin2(5x)+5cos2(5x)cos2(5x)\frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}}

    Now plug in to the quotient rule:

    (5sin2(5x)+5cos2(5x))sin(10x)cos2(5x)+10cos(10x)tan(5x)tan2(5x)\frac{- \frac{\left(5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right) \sin{\left(10 x \right)}}{\cos^{2}{\left(5 x \right)}} + 10 \cos{\left(10 x \right)} \tan{\left(5 x \right)}}{\tan^{2}{\left(5 x \right)}}

  2. Now simplify:

    10sin(10x)- 10 \sin{\left(10 x \right)}


The answer is:

10sin(10x)- 10 \sin{\left(10 x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
               /          2     \          
10*cos(10*x)   \-5 - 5*tan (5*x)/*sin(10*x)
------------ + ----------------------------
  tan(5*x)                 2               
                        tan (5*x)          
(5tan2(5x)5)sin(10x)tan2(5x)+10cos(10x)tan(5x)\frac{\left(- 5 \tan^{2}{\left(5 x \right)} - 5\right) \sin{\left(10 x \right)}}{\tan^{2}{\left(5 x \right)}} + \frac{10 \cos{\left(10 x \right)}}{\tan{\left(5 x \right)}}
The second derivative [src]
   /                               /            2     \               /       2     \          \
   |               /       2     \ |     1 + tan (5*x)|             2*\1 + tan (5*x)/*cos(10*x)|
50*|-2*sin(10*x) + \1 + tan (5*x)/*|-1 + -------------|*sin(10*x) - ---------------------------|
   |                               |          2       |                       tan(5*x)         |
   \                               \       tan (5*x)  /                                        /
------------------------------------------------------------------------------------------------
                                            tan(5*x)                                            
50((tan2(5x)+1tan2(5x)1)(tan2(5x)+1)sin(10x)2(tan2(5x)+1)cos(10x)tan(5x)2sin(10x))tan(5x)\frac{50 \left(\left(\frac{\tan^{2}{\left(5 x \right)} + 1}{\tan^{2}{\left(5 x \right)}} - 1\right) \left(\tan^{2}{\left(5 x \right)} + 1\right) \sin{\left(10 x \right)} - \frac{2 \left(\tan^{2}{\left(5 x \right)} + 1\right) \cos{\left(10 x \right)}}{\tan{\left(5 x \right)}} - 2 \sin{\left(10 x \right)}\right)}{\tan{\left(5 x \right)}}
The third derivative [src]
    /                                                                                                                                        /            2     \          \
    |                                                                                                                        /       2     \ |     1 + tan (5*x)|          |
    |  /                                   2                    3\                                                         6*\1 + tan (5*x)/*|-1 + -------------|*cos(10*x)|
    |  |                    /       2     \      /       2     \ |                             /       2     \                               |          2       |          |
    |  |         2        5*\1 + tan (5*x)/    3*\1 + tan (5*x)/ |             4*cos(10*x)   6*\1 + tan (5*x)/*sin(10*x)                     \       tan (5*x)  /          |
250*|- |2 + 2*tan (5*x) - ------------------ + ------------------|*sin(10*x) - ----------- + --------------------------- + ------------------------------------------------|
    |  |                         2                    4          |               tan(5*x)                2                                     tan(5*x)                    |
    \  \                      tan (5*x)            tan (5*x)     /                                    tan (5*x)                                                            /
250(6(tan2(5x)+1tan2(5x)1)(tan2(5x)+1)cos(10x)tan(5x)+6(tan2(5x)+1)sin(10x)tan2(5x)(3(tan2(5x)+1)3tan4(5x)5(tan2(5x)+1)2tan2(5x)+2tan2(5x)+2)sin(10x)4cos(10x)tan(5x))250 \left(\frac{6 \left(\frac{\tan^{2}{\left(5 x \right)} + 1}{\tan^{2}{\left(5 x \right)}} - 1\right) \left(\tan^{2}{\left(5 x \right)} + 1\right) \cos{\left(10 x \right)}}{\tan{\left(5 x \right)}} + \frac{6 \left(\tan^{2}{\left(5 x \right)} + 1\right) \sin{\left(10 x \right)}}{\tan^{2}{\left(5 x \right)}} - \left(\frac{3 \left(\tan^{2}{\left(5 x \right)} + 1\right)^{3}}{\tan^{4}{\left(5 x \right)}} - \frac{5 \left(\tan^{2}{\left(5 x \right)} + 1\right)^{2}}{\tan^{2}{\left(5 x \right)}} + 2 \tan^{2}{\left(5 x \right)} + 2\right) \sin{\left(10 x \right)} - \frac{4 \cos{\left(10 x \right)}}{\tan{\left(5 x \right)}}\right)