sin(10*x) --------- tan(5*x)
sin(10*x)/tan(5*x)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \
10*cos(10*x) \-5 - 5*tan (5*x)/*sin(10*x)
------------ + ----------------------------
tan(5*x) 2
tan (5*x)
/ / 2 \ / 2 \ \
| / 2 \ | 1 + tan (5*x)| 2*\1 + tan (5*x)/*cos(10*x)|
50*|-2*sin(10*x) + \1 + tan (5*x)/*|-1 + -------------|*sin(10*x) - ---------------------------|
| | 2 | tan(5*x) |
\ \ tan (5*x) / /
------------------------------------------------------------------------------------------------
tan(5*x)
/ / 2 \ \
| / 2 \ | 1 + tan (5*x)| |
| / 2 3\ 6*\1 + tan (5*x)/*|-1 + -------------|*cos(10*x)|
| | / 2 \ / 2 \ | / 2 \ | 2 | |
| | 2 5*\1 + tan (5*x)/ 3*\1 + tan (5*x)/ | 4*cos(10*x) 6*\1 + tan (5*x)/*sin(10*x) \ tan (5*x) / |
250*|- |2 + 2*tan (5*x) - ------------------ + ------------------|*sin(10*x) - ----------- + --------------------------- + ------------------------------------------------|
| | 2 4 | tan(5*x) 2 tan(5*x) |
\ \ tan (5*x) tan (5*x) / tan (5*x) /