sin(10*x) --------- tan(5*x)
sin(10*x)/tan(5*x)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \ 10*cos(10*x) \-5 - 5*tan (5*x)/*sin(10*x) ------------ + ---------------------------- tan(5*x) 2 tan (5*x)
/ / 2 \ / 2 \ \ | / 2 \ | 1 + tan (5*x)| 2*\1 + tan (5*x)/*cos(10*x)| 50*|-2*sin(10*x) + \1 + tan (5*x)/*|-1 + -------------|*sin(10*x) - ---------------------------| | | 2 | tan(5*x) | \ \ tan (5*x) / / ------------------------------------------------------------------------------------------------ tan(5*x)
/ / 2 \ \ | / 2 \ | 1 + tan (5*x)| | | / 2 3\ 6*\1 + tan (5*x)/*|-1 + -------------|*cos(10*x)| | | / 2 \ / 2 \ | / 2 \ | 2 | | | | 2 5*\1 + tan (5*x)/ 3*\1 + tan (5*x)/ | 4*cos(10*x) 6*\1 + tan (5*x)/*sin(10*x) \ tan (5*x) / | 250*|- |2 + 2*tan (5*x) - ------------------ + ------------------|*sin(10*x) - ----------- + --------------------------- + ------------------------------------------------| | | 2 4 | tan(5*x) 2 tan(5*x) | \ \ tan (5*x) tan (5*x) / tan (5*x) /