Mister Exam

Derivative of sin^2z

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2   
sin (z)
$$\sin^{2}{\left(z \right)}$$
d /   2   \
--\sin (z)/
dz         
$$\frac{d}{d z} \sin^{2}{\left(z \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of sine is cosine:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
2*cos(z)*sin(z)
$$2 \sin{\left(z \right)} \cos{\left(z \right)}$$
The second derivative [src]
  /   2         2   \
2*\cos (z) - sin (z)/
$$2 \left(- \sin^{2}{\left(z \right)} + \cos^{2}{\left(z \right)}\right)$$
The third derivative [src]
-8*cos(z)*sin(z)
$$- 8 \sin{\left(z \right)} \cos{\left(z \right)}$$
The graph
Derivative of sin^2z