Mister Exam

Other calculators


sqrt(x^2-25)

Derivative of sqrt(x^2-25)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _________
  /  2      
\/  x  - 25 
x225\sqrt{x^{2} - 25}
sqrt(x^2 - 25)
Detail solution
  1. Let u=x225u = x^{2} - 25.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(x225)\frac{d}{d x} \left(x^{2} - 25\right):

    1. Differentiate x225x^{2} - 25 term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of the constant 25-25 is zero.

      The result is: 2x2 x

    The result of the chain rule is:

    xx225\frac{x}{\sqrt{x^{2} - 25}}

  4. Now simplify:

    xx225\frac{x}{\sqrt{x^{2} - 25}}


The answer is:

xx225\frac{x}{\sqrt{x^{2} - 25}}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
     x      
------------
   _________
  /  2      
\/  x  - 25 
xx225\frac{x}{\sqrt{x^{2} - 25}}
The second derivative [src]
         2   
        x    
 1 - --------
            2
     -25 + x 
-------------
   __________
  /        2 
\/  -25 + x  
x2x225+1x225\frac{- \frac{x^{2}}{x^{2} - 25} + 1}{\sqrt{x^{2} - 25}}
The third derivative [src]
    /         2   \
    |        x    |
3*x*|-1 + --------|
    |            2|
    \     -25 + x /
-------------------
             3/2   
   /       2\      
   \-25 + x /      
3x(x2x2251)(x225)32\frac{3 x \left(\frac{x^{2}}{x^{2} - 25} - 1\right)}{\left(x^{2} - 25\right)^{\frac{3}{2}}}
The graph
Derivative of sqrt(x^2-25)