Mister Exam

Other calculators

Derivative of -arcsin((lnx)/(sqrt(2)))+c

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /log(x)\    
- asin|------| + c
      |  ___ |    
      \\/ 2  /    
$$c - \operatorname{asin}{\left(\frac{\log{\left(x \right)}}{\sqrt{2}} \right)}$$
d /      /log(x)\    \
--|- asin|------| + c|
dx|      |  ___ |    |
  \      \\/ 2  /    /
$$\frac{\partial}{\partial x} \left(c - \operatorname{asin}{\left(\frac{\log{\left(x \right)}}{\sqrt{2}} \right)}\right)$$
The first derivative [src]
          ___         
       -\/ 2          
----------------------
         _____________
        /        2    
       /      log (x) 
2*x*  /   1 - ------- 
    \/           2    
$$- \frac{\sqrt{2}}{2 x \sqrt{- \frac{\log{\left(x \right)}^{2}}{2} + 1}}$$
The second derivative [src]
  ___ /       log(x)  \
\/ 2 *|2 - -----------|
      |           2   |
      |        log (x)|
      |    1 - -------|
      \           2   /
-----------------------
          _____________
         /        2    
   2    /      log (x) 
4*x *  /   1 - ------- 
     \/           2    
$$\frac{\sqrt{2} \cdot \left(2 - \frac{\log{\left(x \right)}}{- \frac{\log{\left(x \right)}^{2}}{2} + 1}\right)}{4 x^{2} \sqrt{- \frac{\log{\left(x \right)}^{2}}{2} + 1}}$$
The third derivative [src]
      /                               2                         \
  ___ |            1             3*log (x)           3*log(x)   |
\/ 2 *|-1 - --------------- - ---------------- + ---------------|
      |       /       2   \                  2     /       2   \|
      |       |    log (x)|     /       2   \      |    log (x)||
      |     4*|1 - -------|     |    log (x)|    4*|1 - -------||
      |       \       2   /   8*|1 - -------|      \       2   /|
      \                         \       2   /                   /
-----------------------------------------------------------------
                              _____________                      
                             /        2                          
                       3    /      log (x)                       
                      x *  /   1 - -------                       
                         \/           2                          
$$\frac{\sqrt{2} \left(-1 + \frac{3 \log{\left(x \right)}}{4 \cdot \left(- \frac{\log{\left(x \right)}^{2}}{2} + 1\right)} - \frac{3 \log{\left(x \right)}^{2}}{8 \left(- \frac{\log{\left(x \right)}^{2}}{2} + 1\right)^{2}} - \frac{1}{4 \cdot \left(- \frac{\log{\left(x \right)}^{2}}{2} + 1\right)}\right)}{x^{3} \sqrt{- \frac{\log{\left(x \right)}^{2}}{2} + 1}}$$