Mister Exam

Other calculators


sin(5*x)^(6)

Derivative of sin(5*x)^(6)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   6     
sin (5*x)
sin6(5x)\sin^{6}{\left(5 x \right)}
d /   6     \
--\sin (5*x)/
dx           
ddxsin6(5x)\frac{d}{d x} \sin^{6}{\left(5 x \right)}
Detail solution
  1. Let u=sin(5x)u = \sin{\left(5 x \right)}.

  2. Apply the power rule: u6u^{6} goes to 6u56 u^{5}

  3. Then, apply the chain rule. Multiply by ddxsin(5x)\frac{d}{d x} \sin{\left(5 x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5cos(5x)5 \cos{\left(5 x \right)}

    The result of the chain rule is:

    30sin5(5x)cos(5x)30 \sin^{5}{\left(5 x \right)} \cos{\left(5 x \right)}


The answer is:

30sin5(5x)cos(5x)30 \sin^{5}{\left(5 x \right)} \cos{\left(5 x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
      5              
30*sin (5*x)*cos(5*x)
30sin5(5x)cos(5x)30 \sin^{5}{\left(5 x \right)} \cos{\left(5 x \right)}
The second derivative [src]
       4      /     2             2     \
150*sin (5*x)*\- sin (5*x) + 5*cos (5*x)/
150(sin2(5x)+5cos2(5x))sin4(5x)150 \left(- \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right) \sin^{4}{\left(5 x \right)}
The third derivative [src]
        3      /       2             2     \         
3000*sin (5*x)*\- 4*sin (5*x) + 5*cos (5*x)/*cos(5*x)
3000(4sin2(5x)+5cos2(5x))sin3(5x)cos(5x)3000 \left(- 4 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right) \sin^{3}{\left(5 x \right)} \cos{\left(5 x \right)}
The graph
Derivative of sin(5*x)^(6)