Mister Exam

Other calculators

Derivative of (sin(5*x))^(log(2*x-3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   log(2*x - 3)     
sin            (5*x)
$$\sin^{\log{\left(2 x - 3 \right)}}{\left(5 x \right)}$$
sin(5*x)^log(2*x - 3)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   log(2*x - 3)      /2*log(sin(5*x))   5*cos(5*x)*log(2*x - 3)\
sin            (5*x)*|--------------- + -----------------------|
                     \    2*x - 3               sin(5*x)       /
$$\left(\frac{5 \log{\left(2 x - 3 \right)} \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}} + \frac{2 \log{\left(\sin{\left(5 x \right)} \right)}}{2 x - 3}\right) \sin^{\log{\left(2 x - 3 \right)}}{\left(5 x \right)}$$
The second derivative [src]
                      /                                            2                                              2                                         \
   log(-3 + 2*x)      |/2*log(sin(5*x))   5*cos(5*x)*log(-3 + 2*x)\                       4*log(sin(5*x))   25*cos (5*x)*log(-3 + 2*x)       20*cos(5*x)    |
sin             (5*x)*||--------------- + ------------------------|  - 25*log(-3 + 2*x) - --------------- - -------------------------- + -------------------|
                      |\    -3 + 2*x              sin(5*x)        /                                   2                2                 (-3 + 2*x)*sin(5*x)|
                      \                                                                     (-3 + 2*x)              sin (5*x)                               /
$$\left(\left(\frac{5 \log{\left(2 x - 3 \right)} \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}} + \frac{2 \log{\left(\sin{\left(5 x \right)} \right)}}{2 x - 3}\right)^{2} - 25 \log{\left(2 x - 3 \right)} - \frac{25 \log{\left(2 x - 3 \right)} \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}} + \frac{20 \cos{\left(5 x \right)}}{\left(2 x - 3\right) \sin{\left(5 x \right)}} - \frac{4 \log{\left(\sin{\left(5 x \right)} \right)}}{\left(2 x - 3\right)^{2}}\right) \sin^{\log{\left(2 x - 3 \right)}}{\left(5 x \right)}$$
The third derivative [src]
                      /                                            3                                                             /                                                                 2                   \                                2                                          3                                                \
   log(-3 + 2*x)      |/2*log(sin(5*x))   5*cos(5*x)*log(-3 + 2*x)\      150        /2*log(sin(5*x))   5*cos(5*x)*log(-3 + 2*x)\ |                   4*log(sin(5*x))       20*cos(5*x)       25*cos (5*x)*log(-3 + 2*x)|   16*log(sin(5*x))      150*cos (5*x)           60*cos(5*x)        250*cos (5*x)*log(-3 + 2*x)   250*cos(5*x)*log(-3 + 2*x)|
sin             (5*x)*||--------------- + ------------------------|  - -------- - 3*|--------------- + ------------------------|*|25*log(-3 + 2*x) + --------------- - ------------------- + --------------------------| + ---------------- - -------------------- - -------------------- + --------------------------- + --------------------------|
                      |\    -3 + 2*x              sin(5*x)        /    -3 + 2*x     \    -3 + 2*x              sin(5*x)        / |                               2     (-3 + 2*x)*sin(5*x)              2              |               3                    2                  2                        3                          sin(5*x)         |
                      \                                                                                                          \                     (-3 + 2*x)                                    sin (5*x)         /     (-3 + 2*x)       (-3 + 2*x)*sin (5*x)   (-3 + 2*x) *sin(5*x)            sin (5*x)                                      /
$$\left(\left(\frac{5 \log{\left(2 x - 3 \right)} \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}} + \frac{2 \log{\left(\sin{\left(5 x \right)} \right)}}{2 x - 3}\right)^{3} - 3 \left(\frac{5 \log{\left(2 x - 3 \right)} \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}} + \frac{2 \log{\left(\sin{\left(5 x \right)} \right)}}{2 x - 3}\right) \left(25 \log{\left(2 x - 3 \right)} + \frac{25 \log{\left(2 x - 3 \right)} \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}} - \frac{20 \cos{\left(5 x \right)}}{\left(2 x - 3\right) \sin{\left(5 x \right)}} + \frac{4 \log{\left(\sin{\left(5 x \right)} \right)}}{\left(2 x - 3\right)^{2}}\right) + \frac{250 \log{\left(2 x - 3 \right)} \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}} + \frac{250 \log{\left(2 x - 3 \right)} \cos^{3}{\left(5 x \right)}}{\sin^{3}{\left(5 x \right)}} - \frac{150}{2 x - 3} - \frac{150 \cos^{2}{\left(5 x \right)}}{\left(2 x - 3\right) \sin^{2}{\left(5 x \right)}} - \frac{60 \cos{\left(5 x \right)}}{\left(2 x - 3\right)^{2} \sin{\left(5 x \right)}} + \frac{16 \log{\left(\sin{\left(5 x \right)} \right)}}{\left(2 x - 3\right)^{3}}\right) \sin^{\log{\left(2 x - 3 \right)}}{\left(5 x \right)}$$