log(2*x - 3) sin (5*x)
sin(5*x)^log(2*x - 3)
Don't know the steps in finding this derivative.
But the derivative is
Now simplify:
The answer is:
log(2*x - 3) /2*log(sin(5*x)) 5*cos(5*x)*log(2*x - 3)\
sin (5*x)*|--------------- + -----------------------|
\ 2*x - 3 sin(5*x) /
/ 2 2 \
log(-3 + 2*x) |/2*log(sin(5*x)) 5*cos(5*x)*log(-3 + 2*x)\ 4*log(sin(5*x)) 25*cos (5*x)*log(-3 + 2*x) 20*cos(5*x) |
sin (5*x)*||--------------- + ------------------------| - 25*log(-3 + 2*x) - --------------- - -------------------------- + -------------------|
|\ -3 + 2*x sin(5*x) / 2 2 (-3 + 2*x)*sin(5*x)|
\ (-3 + 2*x) sin (5*x) /
/ 3 / 2 \ 2 3 \
log(-3 + 2*x) |/2*log(sin(5*x)) 5*cos(5*x)*log(-3 + 2*x)\ 150 /2*log(sin(5*x)) 5*cos(5*x)*log(-3 + 2*x)\ | 4*log(sin(5*x)) 20*cos(5*x) 25*cos (5*x)*log(-3 + 2*x)| 16*log(sin(5*x)) 150*cos (5*x) 60*cos(5*x) 250*cos (5*x)*log(-3 + 2*x) 250*cos(5*x)*log(-3 + 2*x)|
sin (5*x)*||--------------- + ------------------------| - -------- - 3*|--------------- + ------------------------|*|25*log(-3 + 2*x) + --------------- - ------------------- + --------------------------| + ---------------- - -------------------- - -------------------- + --------------------------- + --------------------------|
|\ -3 + 2*x sin(5*x) / -3 + 2*x \ -3 + 2*x sin(5*x) / | 2 (-3 + 2*x)*sin(5*x) 2 | 3 2 2 3 sin(5*x) |
\ \ (-3 + 2*x) sin (5*x) / (-3 + 2*x) (-3 + 2*x)*sin (5*x) (-3 + 2*x) *sin(5*x) sin (5*x) /