Mister Exam

Other calculators

Derivative of sin(5*x)/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(5*x)
--------
    2   
   x    
sin(5x)x2\frac{\sin{\left(5 x \right)}}{x^{2}}
sin(5*x)/x^2
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(5x)f{\left(x \right)} = \sin{\left(5 x \right)} and g(x)=x2g{\left(x \right)} = x^{2}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5cos(5x)5 \cos{\left(5 x \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    Now plug in to the quotient rule:

    5x2cos(5x)2xsin(5x)x4\frac{5 x^{2} \cos{\left(5 x \right)} - 2 x \sin{\left(5 x \right)}}{x^{4}}

  2. Now simplify:

    5xcos(5x)2sin(5x)x3\frac{5 x \cos{\left(5 x \right)} - 2 \sin{\left(5 x \right)}}{x^{3}}


The answer is:

5xcos(5x)2sin(5x)x3\frac{5 x \cos{\left(5 x \right)} - 2 \sin{\left(5 x \right)}}{x^{3}}

The graph
02468-8-6-4-2-1010-1000500
The first derivative [src]
  2*sin(5*x)   5*cos(5*x)
- ---------- + ----------
       3            2    
      x            x     
5cos(5x)x22sin(5x)x3\frac{5 \cos{\left(5 x \right)}}{x^{2}} - \frac{2 \sin{\left(5 x \right)}}{x^{3}}
The second derivative [src]
               20*cos(5*x)   6*sin(5*x)
-25*sin(5*x) - ----------- + ----------
                    x             2    
                                 x     
---------------------------------------
                    2                  
                   x                   
25sin(5x)20cos(5x)x+6sin(5x)x2x2\frac{- 25 \sin{\left(5 x \right)} - \frac{20 \cos{\left(5 x \right)}}{x} + \frac{6 \sin{\left(5 x \right)}}{x^{2}}}{x^{2}}
The third derivative [src]
                24*sin(5*x)   90*cos(5*x)   150*sin(5*x)
-125*cos(5*x) - ----------- + ----------- + ------------
                      3             2            x      
                     x             x                    
--------------------------------------------------------
                            2                           
                           x                            
125cos(5x)+150sin(5x)x+90cos(5x)x224sin(5x)x3x2\frac{- 125 \cos{\left(5 x \right)} + \frac{150 \sin{\left(5 x \right)}}{x} + \frac{90 \cos{\left(5 x \right)}}{x^{2}} - \frac{24 \sin{\left(5 x \right)}}{x^{3}}}{x^{2}}