Mister Exam

Other calculators

Derivative of sin(5*x)/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(5*x)
--------
    2   
   x    
$$\frac{\sin{\left(5 x \right)}}{x^{2}}$$
sin(5*x)/x^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  2*sin(5*x)   5*cos(5*x)
- ---------- + ----------
       3            2    
      x            x     
$$\frac{5 \cos{\left(5 x \right)}}{x^{2}} - \frac{2 \sin{\left(5 x \right)}}{x^{3}}$$
The second derivative [src]
               20*cos(5*x)   6*sin(5*x)
-25*sin(5*x) - ----------- + ----------
                    x             2    
                                 x     
---------------------------------------
                    2                  
                   x                   
$$\frac{- 25 \sin{\left(5 x \right)} - \frac{20 \cos{\left(5 x \right)}}{x} + \frac{6 \sin{\left(5 x \right)}}{x^{2}}}{x^{2}}$$
The third derivative [src]
                24*sin(5*x)   90*cos(5*x)   150*sin(5*x)
-125*cos(5*x) - ----------- + ----------- + ------------
                      3             2            x      
                     x             x                    
--------------------------------------------------------
                            2                           
                           x                            
$$\frac{- 125 \cos{\left(5 x \right)} + \frac{150 \sin{\left(5 x \right)}}{x} + \frac{90 \cos{\left(5 x \right)}}{x^{2}} - \frac{24 \sin{\left(5 x \right)}}{x^{3}}}{x^{2}}$$