Detail solution
-
Differentiate term by term:
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: goes to
So, the result is:
The result is:
The answer is:
The first derivative
[src]
4
20*x - cos(cos(x))*sin(x)
$$20 x^{4} - \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}$$
The second derivative
[src]
3 2
80*x - sin (x)*sin(cos(x)) - cos(x)*cos(cos(x))
$$80 x^{3} - \sin^{2}{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} - \cos{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}$$
The third derivative
[src]
2 3
240*x + sin (x)*cos(cos(x)) + cos(cos(x))*sin(x) - 3*cos(x)*sin(x)*sin(cos(x))
$$240 x^{2} + \sin^{3}{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)} - 3 \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} + \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}$$