Mister Exam

Other calculators


sin(cosx)+4x^5

Derivative of sin(cosx)+4x^5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 5
sin(cos(x)) + 4*x 
$$4 x^{5} + \sin{\left(\cos{\left(x \right)} \right)}$$
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result is:


The answer is:

The graph
The first derivative [src]
    4                     
20*x  - cos(cos(x))*sin(x)
$$20 x^{4} - \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}$$
The second derivative [src]
    3      2                                    
80*x  - sin (x)*sin(cos(x)) - cos(x)*cos(cos(x))
$$80 x^{3} - \sin^{2}{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} - \cos{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}$$
The third derivative [src]
     2      3                                                                  
240*x  + sin (x)*cos(cos(x)) + cos(cos(x))*sin(x) - 3*cos(x)*sin(x)*sin(cos(x))
$$240 x^{2} + \sin^{3}{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)} - 3 \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} + \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}$$
The graph
Derivative of sin(cosx)+4x^5