Mister Exam

Other calculators


sin(cosx)+4x^5

Derivative of sin(cosx)+4x^5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 5
sin(cos(x)) + 4*x 
4x5+sin(cos(x))4 x^{5} + \sin{\left(\cos{\left(x \right)} \right)}
Detail solution
  1. Differentiate 4x5+sin(cos(x))4 x^{5} + \sin{\left(\cos{\left(x \right)} \right)} term by term:

    1. Let u=cos(x)u = \cos{\left(x \right)}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      sin(x)cos(cos(x))- \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x5x^{5} goes to 5x45 x^{4}

      So, the result is: 20x420 x^{4}

    The result is: 20x4sin(x)cos(cos(x))20 x^{4} - \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}


The answer is:

20x4sin(x)cos(cos(x))20 x^{4} - \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}

The graph
02468-8-6-4-2-1010-10000001000000
The first derivative [src]
    4                     
20*x  - cos(cos(x))*sin(x)
20x4sin(x)cos(cos(x))20 x^{4} - \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}
The second derivative [src]
    3      2                                    
80*x  - sin (x)*sin(cos(x)) - cos(x)*cos(cos(x))
80x3sin2(x)sin(cos(x))cos(x)cos(cos(x))80 x^{3} - \sin^{2}{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} - \cos{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}
The third derivative [src]
     2      3                                                                  
240*x  + sin (x)*cos(cos(x)) + cos(cos(x))*sin(x) - 3*cos(x)*sin(x)*sin(cos(x))
240x2+sin3(x)cos(cos(x))3sin(x)sin(cos(x))cos(x)+sin(x)cos(cos(x))240 x^{2} + \sin^{3}{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)} - 3 \sin{\left(x \right)} \sin{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} + \sin{\left(x \right)} \cos{\left(\cos{\left(x \right)} \right)}
The graph
Derivative of sin(cosx)+4x^5