8 sin (x) -------- cos(5*x)
sin(x)^8/cos(5*x)
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
8 7 5*sin (x)*sin(5*x) 8*sin (x)*cos(x) ------------------ + ---------------- 2 cos(5*x) cos (5*x)
/ / 2 \ \ 6 | 2 2 2 | 2*sin (5*x)| 80*cos(x)*sin(x)*sin(5*x)| sin (x)*|- 8*sin (x) + 56*cos (x) + 25*sin (x)*|1 + -----------| + -------------------------| | | 2 | cos(5*x) | \ \ cos (5*x) / / --------------------------------------------------------------------------------------------- cos(5*x)
/ / 2 \ \ | 3 | 6*sin (5*x)| | | 125*sin (x)*|5 + -----------|*sin(5*x)| | / 2 \ / 2 2 \ | 2 | | 5 | / 2 2 \ 2 | 2*sin (5*x)| 120*\sin (x) - 7*cos (x)/*sin(x)*sin(5*x) \ cos (5*x) / | sin (x)*|- 16*\- 21*cos (x) + 11*sin (x)/*cos(x) + 600*sin (x)*|1 + -----------|*cos(x) - ----------------------------------------- + --------------------------------------| | | 2 | cos(5*x) cos(5*x) | \ \ cos (5*x) / / ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- cos(5*x)