Mister Exam

Other calculators

Derivative of sin4x+cos(3x-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(4*x) + cos(3*x - 3)
sin(4x)+cos(3x3)\sin{\left(4 x \right)} + \cos{\left(3 x - 3 \right)}
sin(4*x) + cos(3*x - 3)
Detail solution
  1. Differentiate sin(4x)+cos(3x3)\sin{\left(4 x \right)} + \cos{\left(3 x - 3 \right)} term by term:

    1. Let u=4xu = 4 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4cos(4x)4 \cos{\left(4 x \right)}

    4. Let u=3x3u = 3 x - 3.

    5. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    6. Then, apply the chain rule. Multiply by ddx(3x3)\frac{d}{d x} \left(3 x - 3\right):

      1. Differentiate 3x33 x - 3 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        2. The derivative of the constant 3-3 is zero.

        The result is: 33

      The result of the chain rule is:

      3sin(3x3)- 3 \sin{\left(3 x - 3 \right)}

    The result is: 3sin(3x3)+4cos(4x)- 3 \sin{\left(3 x - 3 \right)} + 4 \cos{\left(4 x \right)}

  2. Now simplify:

    3sin(3x3)+4cos(4x)- 3 \sin{\left(3 x - 3 \right)} + 4 \cos{\left(4 x \right)}


The answer is:

3sin(3x3)+4cos(4x)- 3 \sin{\left(3 x - 3 \right)} + 4 \cos{\left(4 x \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
-3*sin(3*x - 3) + 4*cos(4*x)
3sin(3x3)+4cos(4x)- 3 \sin{\left(3 x - 3 \right)} + 4 \cos{\left(4 x \right)}
The second derivative [src]
-(9*cos(3*(-1 + x)) + 16*sin(4*x))
(16sin(4x)+9cos(3(x1)))- (16 \sin{\left(4 x \right)} + 9 \cos{\left(3 \left(x - 1\right) \right)})
The third derivative [src]
-64*cos(4*x) + 27*sin(3*(-1 + x))
27sin(3(x1))64cos(4x)27 \sin{\left(3 \left(x - 1\right) \right)} - 64 \cos{\left(4 x \right)}