Mister Exam

Other calculators

Derivative of sec^2(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/ 2\
sec \x /
$$\sec^{2}{\left(x^{2} \right)}$$
sec(x^2)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       2/ 2\    / 2\
4*x*sec \x /*tan\x /
$$4 x \tan{\left(x^{2} \right)} \sec^{2}{\left(x^{2} \right)}$$
The second derivative [src]
     2/ 2\ /   2 /       2/ 2\\      2    2/ 2\      / 2\\
4*sec \x /*\2*x *\1 + tan \x // + 4*x *tan \x / + tan\x //
$$4 \left(2 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right) + 4 x^{2} \tan^{2}{\left(x^{2} \right)} + \tan{\left(x^{2} \right)}\right) \sec^{2}{\left(x^{2} \right)}$$
The third derivative [src]
       2/ 2\ /         2/ 2\      2    3/ 2\       2 /       2/ 2\\    / 2\\
8*x*sec \x /*\3 + 9*tan \x / + 8*x *tan \x / + 16*x *\1 + tan \x //*tan\x //
$$8 x \left(16 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \tan{\left(x^{2} \right)} + 8 x^{2} \tan^{3}{\left(x^{2} \right)} + 9 \tan^{2}{\left(x^{2} \right)} + 3\right) \sec^{2}{\left(x^{2} \right)}$$