Mister Exam

Derivative of sqrt(2x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________
\/ 2*x - 1 
2x1\sqrt{2 x - 1}
sqrt(2*x - 1)
Detail solution
  1. Let u=2x1u = 2 x - 1.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(2x1)\frac{d}{d x} \left(2 x - 1\right):

    1. Differentiate 2x12 x - 1 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      2. The derivative of the constant 1-1 is zero.

      The result is: 22

    The result of the chain rule is:

    12x1\frac{1}{\sqrt{2 x - 1}}

  4. Now simplify:

    12x1\frac{1}{\sqrt{2 x - 1}}


The answer is:

12x1\frac{1}{\sqrt{2 x - 1}}

The graph
02468-8-6-4-2-1010020
The first derivative [src]
     1     
-----------
  _________
\/ 2*x - 1 
12x1\frac{1}{\sqrt{2 x - 1}}
The second derivative [src]
     -1      
-------------
          3/2
(-1 + 2*x)   
1(2x1)32- \frac{1}{\left(2 x - 1\right)^{\frac{3}{2}}}
The third derivative [src]
      3      
-------------
          5/2
(-1 + 2*x)   
3(2x1)52\frac{3}{\left(2 x - 1\right)^{\frac{5}{2}}}
The graph
Derivative of sqrt(2x-1)