1 + log(x) ---------- 2 x + x + 1
(1 + log(x))/(x^2 + x + 1)
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of is .
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 (1 + log(x))*(-1 - 2*x)
-------------- + -----------------------
/ 2 \ 2
x*\x + x + 1/ / 2 \
\x + x + 1/
/ 2\
| (1 + 2*x) |
2*(1 + log(x))*|-1 + ----------|
| 2|
1 2*(1 + 2*x) \ 1 + x + x /
- -- - -------------- + --------------------------------
2 / 2\ 2
x x*\1 + x + x / 1 + x + x
--------------------------------------------------------
2
1 + x + x
/ 2\ / 2\
| (1 + 2*x) | | (1 + 2*x) |
6*|-1 + ----------| 6*(1 + 2*x)*(1 + log(x))*|-2 + ----------|
| 2| | 2|
2 3*(1 + 2*x) \ 1 + x + x / \ 1 + x + x /
-- + --------------- + ------------------- - ------------------------------------------
3 2 / 2\ / 2\ 2
x x *\1 + x + x / x*\1 + x + x / / 2\
\1 + x + x /
---------------------------------------------------------------------------------------
2
1 + x + x