Mister Exam

Other calculators

Derivative of (1+lnx)/(x^2+x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 + log(x)
----------
 2        
x  + x + 1
$$\frac{\log{\left(x \right)} + 1}{\left(x^{2} + x\right) + 1}$$
(1 + log(x))/(x^2 + x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of is .

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      3. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      1          (1 + log(x))*(-1 - 2*x)
-------------- + -----------------------
  / 2        \                    2     
x*\x  + x + 1/        / 2        \      
                      \x  + x + 1/      
$$\frac{\left(- 2 x - 1\right) \left(\log{\left(x \right)} + 1\right)}{\left(\left(x^{2} + x\right) + 1\right)^{2}} + \frac{1}{x \left(\left(x^{2} + x\right) + 1\right)}$$
The second derivative [src]
                                       /              2\
                                       |     (1 + 2*x) |
                        2*(1 + log(x))*|-1 + ----------|
                                       |              2|
  1     2*(1 + 2*x)                    \     1 + x + x /
- -- - -------------- + --------------------------------
   2     /         2\                       2           
  x    x*\1 + x + x /              1 + x + x            
--------------------------------------------------------
                                2                       
                       1 + x + x                        
$$\frac{\frac{2 \left(\frac{\left(2 x + 1\right)^{2}}{x^{2} + x + 1} - 1\right) \left(\log{\left(x \right)} + 1\right)}{x^{2} + x + 1} - \frac{2 \left(2 x + 1\right)}{x \left(x^{2} + x + 1\right)} - \frac{1}{x^{2}}}{x^{2} + x + 1}$$
The third derivative [src]
                         /              2\                            /              2\
                         |     (1 + 2*x) |                            |     (1 + 2*x) |
                       6*|-1 + ----------|   6*(1 + 2*x)*(1 + log(x))*|-2 + ----------|
                         |              2|                            |              2|
2      3*(1 + 2*x)       \     1 + x + x /                            \     1 + x + x /
-- + --------------- + ------------------- - ------------------------------------------
 3    2 /         2\        /         2\                               2               
x    x *\1 + x + x /      x*\1 + x + x /                   /         2\                
                                                           \1 + x + x /                
---------------------------------------------------------------------------------------
                                                2                                      
                                       1 + x + x                                       
$$\frac{- \frac{6 \left(2 x + 1\right) \left(\frac{\left(2 x + 1\right)^{2}}{x^{2} + x + 1} - 2\right) \left(\log{\left(x \right)} + 1\right)}{\left(x^{2} + x + 1\right)^{2}} + \frac{6 \left(\frac{\left(2 x + 1\right)^{2}}{x^{2} + x + 1} - 1\right)}{x \left(x^{2} + x + 1\right)} + \frac{3 \left(2 x + 1\right)}{x^{2} \left(x^{2} + x + 1\right)} + \frac{2}{x^{3}}}{x^{2} + x + 1}$$