Mister Exam

Other calculators

Derivative of (1-cos(8x))/(2x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 - cos(8*x)
------------
       2    
    2*x     
1cos(8x)2x2\frac{1 - \cos{\left(8 x \right)}}{2 x^{2}}
(1 - cos(8*x))/((2*x^2))
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=1cos(8x)f{\left(x \right)} = 1 - \cos{\left(8 x \right)} and g(x)=2x2g{\left(x \right)} = 2 x^{2}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 1cos(8x)1 - \cos{\left(8 x \right)} term by term:

      1. The derivative of the constant 11 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let u=8xu = 8 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx8x\frac{d}{d x} 8 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 88

          The result of the chain rule is:

          8sin(8x)- 8 \sin{\left(8 x \right)}

        So, the result is: 8sin(8x)8 \sin{\left(8 x \right)}

      The result is: 8sin(8x)8 \sin{\left(8 x \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      So, the result is: 4x4 x

    Now plug in to the quotient rule:

    16x2sin(8x)4x(1cos(8x))4x4\frac{16 x^{2} \sin{\left(8 x \right)} - 4 x \left(1 - \cos{\left(8 x \right)}\right)}{4 x^{4}}

  2. Now simplify:

    4xsin(8x)+cos(8x)1x3\frac{4 x \sin{\left(8 x \right)} + \cos{\left(8 x \right)} - 1}{x^{3}}


The answer is:

4xsin(8x)+cos(8x)1x3\frac{4 x \sin{\left(8 x \right)} + \cos{\left(8 x \right)} - 1}{x^{3}}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
  1 - cos(8*x)      1           
- ------------ + 8*----*sin(8*x)
        3             2         
       x           2*x          
812x2sin(8x)1cos(8x)x38 \frac{1}{2 x^{2}} \sin{\left(8 x \right)} - \frac{1 - \cos{\left(8 x \right)}}{x^{3}}
The second derivative [src]
              16*sin(8*x)   3*(-1 + cos(8*x))
32*cos(8*x) - ----------- - -----------------
                   x                 2       
                                    x        
---------------------------------------------
                       2                     
                      x                      
32cos(8x)16sin(8x)x3(cos(8x)1)x2x2\frac{32 \cos{\left(8 x \right)} - \frac{16 \sin{\left(8 x \right)}}{x} - \frac{3 \left(\cos{\left(8 x \right)} - 1\right)}{x^{2}}}{x^{2}}
The third derivative [src]
  /               48*cos(8*x)   3*(-1 + cos(8*x))   18*sin(8*x)\
4*|-64*sin(8*x) - ----------- + ----------------- + -----------|
  |                    x                 3                2    |
  \                                     x                x     /
----------------------------------------------------------------
                                2                               
                               x                                
4(64sin(8x)48cos(8x)x+18sin(8x)x2+3(cos(8x)1)x3)x2\frac{4 \left(- 64 \sin{\left(8 x \right)} - \frac{48 \cos{\left(8 x \right)}}{x} + \frac{18 \sin{\left(8 x \right)}}{x^{2}} + \frac{3 \left(\cos{\left(8 x \right)} - 1\right)}{x^{3}}\right)}{x^{2}}