1 -------------- x*(log(x) - 1)
1/(x*(log(x) - 1))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Differentiate term by term:
The derivative of is .
The derivative of the constant is zero.
The result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1
- --------------*log(x)
x*(log(x) - 1)
------------------------
x*(log(x) - 1)
log(x) / 1 \
-1 + ----------- + |1 + -----------|*log(x) + log(x)
-1 + log(x) \ -1 + log(x)/
----------------------------------------------------
3 2
x *(-1 + log(x))
/ 1 \
|1 + -----------|*log(x)
4 / 1 \ / 2 3 \ 5*log(x) 3*log(x) \ -1 + log(x)/
5 - 3*log(x) + ----------- - |1 + -----------|*log(x) - |2 + -------------- + -----------|*log(x) - ----------- - -------------- - ------------------------
-1 + log(x) \ -1 + log(x)/ | 2 -1 + log(x)| -1 + log(x) 2 -1 + log(x)
\ (-1 + log(x)) / (-1 + log(x))
-----------------------------------------------------------------------------------------------------------------------------------------------------------
4 2
x *(-1 + log(x))