Mister Exam

Derivative of 1/(x(ln(x)-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      1       
--------------
x*(log(x) - 1)
$$\frac{1}{x \left(\log{\left(x \right)} - 1\right)}$$
1/(x*(log(x) - 1))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Differentiate term by term:

        1. The derivative of is .

        2. The derivative of the constant is zero.

        The result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        1               
- --------------*log(x) 
  x*(log(x) - 1)        
------------------------
     x*(log(x) - 1)     
$$- \frac{\frac{1}{x \left(\log{\left(x \right)} - 1\right)} \log{\left(x \right)}}{x \left(\log{\left(x \right)} - 1\right)}$$
The second derivative [src]
        log(x)     /         1     \                
-1 + ----------- + |1 + -----------|*log(x) + log(x)
     -1 + log(x)   \    -1 + log(x)/                
----------------------------------------------------
                  3              2                  
                 x *(-1 + log(x))                   
$$\frac{\left(1 + \frac{1}{\log{\left(x \right)} - 1}\right) \log{\left(x \right)} + \log{\left(x \right)} - 1 + \frac{\log{\left(x \right)}}{\log{\left(x \right)} - 1}}{x^{3} \left(\log{\left(x \right)} - 1\right)^{2}}$$
The third derivative [src]
                                                                                                                                   /         1     \       
                                                                                                                                   |1 + -----------|*log(x)
                    4        /         1     \          /          2               3     \            5*log(x)       3*log(x)      \    -1 + log(x)/       
5 - 3*log(x) + ----------- - |1 + -----------|*log(x) - |2 + -------------- + -----------|*log(x) - ----------- - -------------- - ------------------------
               -1 + log(x)   \    -1 + log(x)/          |                 2   -1 + log(x)|          -1 + log(x)                2         -1 + log(x)       
                                                        \    (-1 + log(x))               /                        (-1 + log(x))                            
-----------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                      4              2                                                                     
                                                                     x *(-1 + log(x))                                                                      
$$\frac{- \left(1 + \frac{1}{\log{\left(x \right)} - 1}\right) \log{\left(x \right)} - \frac{\left(1 + \frac{1}{\log{\left(x \right)} - 1}\right) \log{\left(x \right)}}{\log{\left(x \right)} - 1} - \left(2 + \frac{3}{\log{\left(x \right)} - 1} + \frac{2}{\left(\log{\left(x \right)} - 1\right)^{2}}\right) \log{\left(x \right)} - 3 \log{\left(x \right)} + 5 - \frac{5 \log{\left(x \right)}}{\log{\left(x \right)} - 1} + \frac{4}{\log{\left(x \right)} - 1} - \frac{3 \log{\left(x \right)}}{\left(\log{\left(x \right)} - 1\right)^{2}}}{x^{4} \left(\log{\left(x \right)} - 1\right)^{2}}$$