1 ------------- /x ___ \ x*\\/ E - 1/
1/(x*(E^(1/x) - 1))
Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
The result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1
-
x
1 e
- -------------- + ---------------
2 /x ___ \ 2
x *\\/ E - 1/ 3 /x ___ \
x *\\/ E - 1/
/ 1 \
| - | 1
| x | -
| 1 2*e | x
|2 + - - -----------|*e
1 | x / 1\|
- | | -||
x | | x||
2*e \ x*\-1 + e //
2 - ----------- - ------------------------
/ 1\ / 1\
| -| | -|
| x| | x|
x*\-1 + e / x*\-1 + e /
------------------------------------------
/ 1\
| -|
3 | x|
x *\-1 + e /
/ 1 1 2 \
| - - - | 1 / 1 \
| x x x | - | - | 1
| 1 6 12*e 6*e 6*e | x | x | -
|6 + -- + - - ----------- - ------------ + -------------|*e | 1 2*e | x
| 2 x / 1\ / 1\ 2| 3*|2 + - - -----------|*e
1 | x | -| | -| / 1\ | | x / 1\|
- | | x| 2 | x| | -| | | | -||
x | x*\-1 + e / x *\-1 + e / 2 | x| | | | x||
6*e \ x *\-1 + e / / \ x*\-1 + e //
-6 + ----------- + ------------------------------------------------------------ + --------------------------
/ 1\ / 1\ / 1\
| -| | -| | -|
| x| | x| | x|
x*\-1 + e / x*\-1 + e / x*\-1 + e /
------------------------------------------------------------------------------------------------------------
/ 1\
| -|
4 | x|
x *\-1 + e /