Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Differentiate term by term:
-
The derivative of the constant is zero.
-
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The answer is:
The first derivative
[src]
-2*x
---------
2
/ 2\
\2 + x /
$$- \frac{2 x}{\left(x^{2} + 2\right)^{2}}$$
The second derivative
[src]
/ 2 \
| 4*x |
2*|-1 + ------|
| 2|
\ 2 + x /
---------------
2
/ 2\
\2 + x /
$$\frac{2 \left(\frac{4 x^{2}}{x^{2} + 2} - 1\right)}{\left(x^{2} + 2\right)^{2}}$$
The third derivative
[src]
/ 2 \
| 2*x |
24*x*|1 - ------|
| 2|
\ 2 + x /
-----------------
3
/ 2\
\2 + x /
$$\frac{24 x \left(- \frac{2 x^{2}}{x^{2} + 2} + 1\right)}{\left(x^{2} + 2\right)^{3}}$$
/ 2 4 \
| 12*x 16*x |
24*|1 - ------ + ---------|
| 2 2|
| 2 + x / 2\ |
\ \2 + x / /
---------------------------
3
/ 2\
\2 + x /
$$\frac{24 \left(\frac{16 x^{4}}{\left(x^{2} + 2\right)^{2}} - \frac{12 x^{2}}{x^{2} + 2} + 1\right)}{\left(x^{2} + 2\right)^{3}}$$