Detail solution
-
Let .
-
The derivative of is itself.
-
Then, apply the chain rule. Multiply by :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
The first derivative
[src]
2
sin (x)
2*cos(x)*e *sin(x)
$$2 e^{\sin^{2}{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
2
/ 2 2 2 2 \ sin (x)
2*\cos (x) - sin (x) + 2*cos (x)*sin (x)/*e
$$2 \left(2 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} - \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) e^{\sin^{2}{\left(x \right)}}$$
The third derivative
[src]
2
/ 2 2 2 2 \ sin (x)
4*\-2 - 3*sin (x) + 3*cos (x) + 2*cos (x)*sin (x)/*cos(x)*e *sin(x)
$$4 \left(2 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} - 3 \sin^{2}{\left(x \right)} + 3 \cos^{2}{\left(x \right)} - 2\right) e^{\sin^{2}{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)}$$