Mister Exam

Other calculators


1/(2*sin(x))

Derivative of 1/(2*sin(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1    
1*--------
  2*sin(x)
$$1 \cdot \frac{1}{2 \sin{\left(x \right)}}$$
d /     1    \
--|1*--------|
dx\  2*sin(x)/
$$\frac{d}{d x} 1 \cdot \frac{1}{2 \sin{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

      So, the result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
     1            
- --------*cos(x) 
  2*sin(x)        
------------------
      sin(x)      
$$- \frac{\frac{1}{2 \sin{\left(x \right)}} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative [src]
       2   
1   cos (x)
- + -------
2      2   
    sin (x)
-----------
   sin(x)  
$$\frac{\frac{1}{2} + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}}{\sin{\left(x \right)}}$$
The third derivative [src]
 /         2   \        
 |5   3*cos (x)|        
-|- + ---------|*cos(x) 
 |2       2    |        
 \     sin (x) /        
------------------------
           2            
        sin (x)         
$$- \frac{\left(\frac{5}{2} + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The graph
Derivative of 1/(2*sin(x))