Mister Exam

Other calculators


1/(2sinx^2)

Derivative of 1/(2sinx^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      1    
1*---------
       2   
  2*sin (x)
$$1 \cdot \frac{1}{2 \sin^{2}{\left(x \right)}}$$
d /      1    \
--|1*---------|
dx|       2   |
  \  2*sin (x)/
$$\frac{d}{d x} 1 \cdot \frac{1}{2 \sin^{2}{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      So, the result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
       1           
-2*---------*cos(x)
        2          
   2*sin (x)       
-------------------
       sin(x)      
$$- \frac{2 \cdot \frac{1}{2 \sin^{2}{\left(x \right)}} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative [src]
         2   
    3*cos (x)
1 + ---------
        2    
     sin (x) 
-------------
      2      
   sin (x)   
$$\frac{1 + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}}{\sin^{2}{\left(x \right)}}$$
The third derivative [src]
   /         2   \       
   |    3*cos (x)|       
-4*|2 + ---------|*cos(x)
   |        2    |       
   \     sin (x) /       
-------------------------
            3            
         sin (x)         
$$- \frac{4 \cdot \left(2 + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}$$
The graph
Derivative of 1/(2sinx^2)