Mister Exam

Derivative of 1/tgx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1   
------
tan(x)
$$\frac{1}{\tan{\left(x \right)}}$$
1/tan(x)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        2   
-1 - tan (x)
------------
     2      
  tan (x)   
$$\frac{- \tan^{2}{\left(x \right)} - 1}{\tan^{2}{\left(x \right)}}$$
The second derivative [src]
                /            2   \
  /       2   \ |     1 + tan (x)|
2*\1 + tan (x)/*|-1 + -----------|
                |          2     |
                \       tan (x)  /
----------------------------------
              tan(x)              
$$\frac{2 \left(\frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} - 1\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}}$$
The third derivative [src]
  /                                3                  2\
  |                   /       2   \      /       2   \ |
  |          2      3*\1 + tan (x)/    5*\1 + tan (x)/ |
2*|-2 - 2*tan (x) - ---------------- + ----------------|
  |                        4                  2        |
  \                     tan (x)            tan (x)     /
$$2 \left(- \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{3}}{\tan^{4}{\left(x \right)}} + \frac{5 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{2}{\left(x \right)}} - 2 \tan^{2}{\left(x \right)} - 2\right)$$
The graph
Derivative of 1/tgx