Mister Exam

Derivative of 1/(sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1   
1*------
  sin(x)
$$1 \cdot \frac{1}{\sin{\left(x \right)}}$$
d /    1   \
--|1*------|
dx\  sin(x)/
$$\frac{d}{d x} 1 \cdot \frac{1}{\sin{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. The derivative of sine is cosine:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
-cos(x) 
--------
   2    
sin (x) 
$$- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The second derivative [src]
         2   
    2*cos (x)
1 + ---------
        2    
     sin (x) 
-------------
    sin(x)   
$$\frac{1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}}{\sin{\left(x \right)}}$$
The third derivative [src]
 /         2   \        
 |    6*cos (x)|        
-|5 + ---------|*cos(x) 
 |        2    |        
 \     sin (x) /        
------------------------
           2            
        sin (x)         
$$- \frac{\left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The graph
Derivative of 1/(sinx)