Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- \frac{1}{x \log{\left(x \right)}^{2}}$$
The second derivative
[src]
2
1 + ------
log(x)
----------
2 2
x *log (x)
$$\frac{1 + \frac{2}{\log{\left(x \right)}}}{x^{2} \log{\left(x \right)}^{2}}$$
The third derivative
[src]
/ 3 3 \
-2*|1 + ------ + -------|
| log(x) 2 |
\ log (x)/
-------------------------
3 2
x *log (x)
$$- \frac{2 \left(1 + \frac{3}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}\right)}{x^{3} \log{\left(x \right)}^{2}}$$