log(x) - 1
----------
2
log (x)
(log(x) - 1)/log(x)^2
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of is .
The result is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 2*(log(x) - 1)
--------- - --------------
2 3
x*log (x) x*log (x)
/ 3 \
2*|1 + ------|*(-1 + log(x))
4 \ log(x)/
-1 - ------ + ----------------------------
log(x) log(x)
------------------------------------------
2 2
x *log (x)
/ / 9 12 \\
| / 3 \ (-1 + log(x))*|2 + ------ + -------||
| 3*|1 + ------| | log(x) 2 ||
| 3 \ log(x)/ \ log (x)/|
2*|1 + ------ + -------------- - ------------------------------------|
\ log(x) log(x) log(x) /
----------------------------------------------------------------------
3 2
x *log (x)