The first derivative
[src]
3
2*atan (2*x)
------------
2
1 + 4*x
$$\frac{2 \operatorname{atan}^{3}{\left(2 x \right)}}{4 x^{2} + 1}$$
The second derivative
[src]
2
-4*atan (2*x)*(-3 + 4*x*atan(2*x))
----------------------------------
2
/ 2\
\1 + 4*x /
$$- \frac{4 \cdot \left(4 x \operatorname{atan}{\left(2 x \right)} - 3\right) \operatorname{atan}^{2}{\left(2 x \right)}}{\left(4 x^{2} + 1\right)^{2}}$$
The third derivative
[src]
/ 2 2 \
| 2 3 18*x*atan(2*x) 16*x *atan (2*x)|
16*|- atan (2*x) + -------- - -------------- + ----------------|*atan(2*x)
| 2 2 2 |
\ 1 + 4*x 1 + 4*x 1 + 4*x /
--------------------------------------------------------------------------
2
/ 2\
\1 + 4*x /
$$\frac{16 \cdot \left(\frac{16 x^{2} \operatorname{atan}^{2}{\left(2 x \right)}}{4 x^{2} + 1} - \operatorname{atan}^{2}{\left(2 x \right)} - \frac{18 x \operatorname{atan}{\left(2 x \right)}}{4 x^{2} + 1} + \frac{3}{4 x^{2} + 1}\right) \operatorname{atan}{\left(2 x \right)}}{\left(4 x^{2} + 1\right)^{2}}$$