Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Apply the product rule:
; to find :
-
The derivative of cosine is negative sine:
; to find :
-
The derivative of sine is cosine:
The result is:
The result of the chain rule is:
-
Now simplify:
The answer is:
The first derivative
[src]
1 / 2 2 \
-------------*\sin (x) - cos (x)/
cos(x)*sin(x)
---------------------------------
cos(x)*sin(x)
$$\frac{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin{\left(x \right)} \cos{\left(x \right)}}$$
The second derivative
[src]
2 2 2 2
sin (x) - cos (x) / 1 1 \ / 2 2 \ sin (x) - cos (x)
4 + ----------------- + |------- - -------|*\sin (x) - cos (x)/ - -----------------
2 | 2 2 | 2
cos (x) \cos (x) sin (x)/ sin (x)
-----------------------------------------------------------------------------------
cos(x)*sin(x)
$$\frac{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \left(\frac{1}{\cos^{2}{\left(x \right)}} - \frac{1}{\sin^{2}{\left(x \right)}}\right) + \frac{\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \frac{\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + 4}{\sin{\left(x \right)} \cos{\left(x \right)}}$$
The third derivative
[src]
/ 1 1 \ / 2 2 \ / 1 1 \ / 2 2 \ / 2 2 \ / sin(x) cos(x)\
|------- - -------|*\sin (x) - cos (x)/ |------- - -------|*\sin (x) - cos (x)/ 2*\sin (x) - cos (x)/*|------- + -------|
/ 2 2 \ / 2 2 \ | 2 2 | | 2 2 | / 2 2 \ | 3 3 |
12 12 3*\sin (x) - cos (x)/ 3*\sin (x) - cos (x)/ \cos (x) sin (x)/ \cos (x) sin (x)/ 2*\sin (x) - cos (x)/ \cos (x) sin (x)/
- ------- + ------- + --------------------- + --------------------- + --------------------------------------- - --------------------------------------- - --------------------- + -----------------------------------------
2 2 4 4 2 2 2 2 cos(x)*sin(x)
sin (x) cos (x) cos (x) sin (x) cos (x) sin (x) cos (x)*sin (x)
$$\frac{2 \left(\frac{\sin{\left(x \right)}}{\cos^{3}{\left(x \right)}} + \frac{\cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}\right) \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin{\left(x \right)} \cos{\left(x \right)}} + \frac{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \left(\frac{1}{\cos^{2}{\left(x \right)}} - \frac{1}{\sin^{2}{\left(x \right)}}\right)}{\cos^{2}{\left(x \right)}} - \frac{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \left(\frac{1}{\cos^{2}{\left(x \right)}} - \frac{1}{\sin^{2}{\left(x \right)}}\right)}{\sin^{2}{\left(x \right)}} + \frac{3 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\cos^{4}{\left(x \right)}} - \frac{2 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} + \frac{3 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin^{4}{\left(x \right)}} + \frac{12}{\cos^{2}{\left(x \right)}} - \frac{12}{\sin^{2}{\left(x \right)}}$$