1 ------------- cos(x)*sin(x)
1/(cos(x)*sin(x))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
The derivative of cosine is negative sine:
; to find :
The derivative of sine is cosine:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1 / 2 2 \
-------------*\sin (x) - cos (x)/
cos(x)*sin(x)
---------------------------------
cos(x)*sin(x)
2 2 2 2
sin (x) - cos (x) / 1 1 \ / 2 2 \ sin (x) - cos (x)
4 + ----------------- + |------- - -------|*\sin (x) - cos (x)/ - -----------------
2 | 2 2 | 2
cos (x) \cos (x) sin (x)/ sin (x)
-----------------------------------------------------------------------------------
cos(x)*sin(x)
/ 1 1 \ / 2 2 \ / 1 1 \ / 2 2 \ / 2 2 \ / sin(x) cos(x)\
|------- - -------|*\sin (x) - cos (x)/ |------- - -------|*\sin (x) - cos (x)/ 2*\sin (x) - cos (x)/*|------- + -------|
/ 2 2 \ / 2 2 \ | 2 2 | | 2 2 | / 2 2 \ | 3 3 |
12 12 3*\sin (x) - cos (x)/ 3*\sin (x) - cos (x)/ \cos (x) sin (x)/ \cos (x) sin (x)/ 2*\sin (x) - cos (x)/ \cos (x) sin (x)/
- ------- + ------- + --------------------- + --------------------- + --------------------------------------- - --------------------------------------- - --------------------- + -----------------------------------------
2 2 4 4 2 2 2 2 cos(x)*sin(x)
sin (x) cos (x) cos (x) sin (x) cos (x) sin (x) cos (x)*sin (x)