Mister Exam

Other calculators


(10x^4-3x^2)/(3x^2-1)^2

Derivative of (10x^4-3x^2)/(3x^2-1)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    4      2
10*x  - 3*x 
------------
          2 
/   2    \  
\3*x  - 1/  
$$\frac{10 x^{4} - 3 x^{2}}{\left(3 x^{2} - 1\right)^{2}}$$
  /    4      2\
d |10*x  - 3*x |
--|------------|
dx|          2 |
  |/   2    \  |
  \\3*x  - 1/  /
$$\frac{d}{d x} \frac{10 x^{4} - 3 x^{2}}{\left(3 x^{2} - 1\right)^{2}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           3        /    4      2\
-6*x + 40*x    12*x*\10*x  - 3*x /
------------ - -------------------
          2                  3    
/   2    \         /   2    \     
\3*x  - 1/         \3*x  - 1/     
$$- \frac{12 x \left(10 x^{4} - 3 x^{2}\right)}{\left(3 x^{2} - 1\right)^{3}} + \frac{40 x^{3} - 6 x}{\left(3 x^{2} - 1\right)^{2}}$$
The second derivative [src]
  /                                      /           2  \             \
  |                                    2 |       18*x   | /         2\|
  |                                 2*x *|-1 + ---------|*\-3 + 10*x /|
  |                2 /         2\        |             2|             |
  |         2   8*x *\-3 + 20*x /        \     -1 + 3*x /             |
6*|-1 + 20*x  - ----------------- + ----------------------------------|
  |                         2                           2             |
  \                 -1 + 3*x                    -1 + 3*x              /
-----------------------------------------------------------------------
                                         2                             
                              /        2\                              
                              \-1 + 3*x /                              
$$\frac{6 \cdot \left(\frac{2 x^{2} \cdot \left(10 x^{2} - 3\right) \left(\frac{18 x^{2}}{3 x^{2} - 1} - 1\right)}{3 x^{2} - 1} + 20 x^{2} - \frac{8 x^{2} \cdot \left(20 x^{2} - 3\right)}{3 x^{2} - 1} - 1\right)}{\left(3 x^{2} - 1\right)^{2}}$$
The third derivative [src]
     /                        /           2  \                      /           2  \             \
     |                        |       18*x   | /         2\       2 |        8*x   | /         2\|
     |                      3*|-1 + ---------|*\-3 + 20*x /   27*x *|-1 + ---------|*\-3 + 10*x /|
     |       /         2\     |             2|                      |             2|             |
     |     9*\-1 + 20*x /     \     -1 + 3*x /                      \     -1 + 3*x /             |
24*x*|10 - -------------- + ------------------------------- - -----------------------------------|
     |               2                         2                                     2           |
     |       -1 + 3*x                  -1 + 3*x                           /        2\            |
     \                                                                    \-1 + 3*x /            /
--------------------------------------------------------------------------------------------------
                                                      2                                           
                                           /        2\                                            
                                           \-1 + 3*x /                                            
$$\frac{24 x \left(- \frac{27 x^{2} \cdot \left(10 x^{2} - 3\right) \left(\frac{8 x^{2}}{3 x^{2} - 1} - 1\right)}{\left(3 x^{2} - 1\right)^{2}} + \frac{3 \cdot \left(20 x^{2} - 3\right) \left(\frac{18 x^{2}}{3 x^{2} - 1} - 1\right)}{3 x^{2} - 1} + 10 - \frac{9 \cdot \left(20 x^{2} - 1\right)}{3 x^{2} - 1}\right)}{\left(3 x^{2} - 1\right)^{2}}$$
The graph
Derivative of (10x^4-3x^2)/(3x^2-1)^2