Mister Exam

Other calculators

Derivative of n^2*x^(n-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2  n - 1
n *x     
$$n^{2} x^{n - 1}$$
n^2*x^(n - 1)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the power rule: goes to

    So, the result is:

  2. Now simplify:


The answer is:

The first derivative [src]
 2  n - 1        
n *x     *(n - 1)
-----------------
        x        
$$\frac{n^{2} x^{n - 1} \left(n - 1\right)}{x}$$
The second derivative [src]
 2  -1 + n                  
n *x      *(-1 + n)*(-2 + n)
----------------------------
              2             
             x              
$$\frac{n^{2} x^{n - 1} \left(n - 2\right) \left(n - 1\right)}{x^{2}}$$
The third derivative [src]
 2  -1 + n          /            2      \
n *x      *(-1 + n)*\5 + (-1 + n)  - 3*n/
-----------------------------------------
                     3                   
                    x                    
$$\frac{n^{2} x^{n - 1} \left(n - 1\right) \left(- 3 n + \left(n - 1\right)^{2} + 5\right)}{x^{3}}$$