2 n - 1 n *x
n^2*x^(n - 1)
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: xn−1x^{n - 1}xn−1 goes to xn−1(n−1)x\frac{x^{n - 1} \left(n - 1\right)}{x}xxn−1(n−1)
So, the result is: n2xn−1(n−1)x\frac{n^{2} x^{n - 1} \left(n - 1\right)}{x}xn2xn−1(n−1)
Now simplify:
The answer is:
2 n - 1 n *x *(n - 1) ----------------- x
2 -1 + n n *x *(-1 + n)*(-2 + n) ---------------------------- 2 x
2 -1 + n / 2 \ n *x *(-1 + n)*\5 + (-1 + n) - 3*n/ ----------------------------------------- 3 x