Mister Exam

Other calculators


-((z)\((z-2)^2))

Derivative of -((z)\((z-2)^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  -z    
--------
       2
(z - 2) 
$$- \frac{z}{\left(z - 2\right)^{2}}$$
-z/(z - 2)^2
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the power rule: goes to

      To find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     1       z*(4 - 2*z)
- -------- - -----------
         2            4 
  (z - 2)      (z - 2)  
$$- \frac{z \left(4 - 2 z\right)}{\left(z - 2\right)^{4}} - \frac{1}{\left(z - 2\right)^{2}}$$
The second derivative [src]
  /     3*z  \
2*|2 - ------|
  \    -2 + z/
--------------
          3   
  (-2 + z)    
$$\frac{2 \left(- \frac{3 z}{z - 2} + 2\right)}{\left(z - 2\right)^{3}}$$
The third derivative [src]
  /      4*z  \
6*|-3 + ------|
  \     -2 + z/
---------------
           4   
   (-2 + z)    
$$\frac{6 \left(\frac{4 z}{z - 2} - 3\right)}{\left(z - 2\right)^{4}}$$
The graph
Derivative of -((z)\((z-2)^2))