Mister Exam

Other calculators


(-x)/(x^2+225)

Derivative of (-x)/(x^2+225)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  -x    
--------
 2      
x  + 225
$$\frac{\left(-1\right) x}{x^{2} + 225}$$
(-x)/(x^2 + 225)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
                    2   
     1           2*x    
- -------- + -----------
   2                   2
  x  + 225   / 2      \ 
             \x  + 225/ 
$$\frac{2 x^{2}}{\left(x^{2} + 225\right)^{2}} - \frac{1}{x^{2} + 225}$$
The second derivative [src]
    /         2  \
    |      4*x   |
2*x*|3 - --------|
    |           2|
    \    225 + x /
------------------
             2    
   /       2\     
   \225 + x /     
$$\frac{2 x \left(- \frac{4 x^{2}}{x^{2} + 225} + 3\right)}{\left(x^{2} + 225\right)^{2}}$$
The third derivative [src]
  /                    /          2  \\
  |                  2 |       2*x   ||
  |               4*x *|-1 + --------||
  |         2          |            2||
  |      4*x           \     225 + x /|
6*|1 - -------- + --------------------|
  |           2                2      |
  \    225 + x          225 + x       /
---------------------------------------
                        2              
              /       2\               
              \225 + x /               
$$\frac{6 \left(\frac{4 x^{2} \left(\frac{2 x^{2}}{x^{2} + 225} - 1\right)}{x^{2} + 225} - \frac{4 x^{2}}{x^{2} + 225} + 1\right)}{\left(x^{2} + 225\right)^{2}}$$
The graph
Derivative of (-x)/(x^2+225)