Mister Exam

Derivative of -sqrt(3x+4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _________
-\/ 3*x + 4 
3x+4- \sqrt{3 x + 4}
-sqrt(3*x + 4)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=3x+4u = 3 x + 4.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(3x+4)\frac{d}{d x} \left(3 x + 4\right):

      1. Differentiate 3x+43 x + 4 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        2. The derivative of the constant 44 is zero.

        The result is: 33

      The result of the chain rule is:

      323x+4\frac{3}{2 \sqrt{3 x + 4}}

    So, the result is: 323x+4- \frac{3}{2 \sqrt{3 x + 4}}

  2. Now simplify:

    323x+4- \frac{3}{2 \sqrt{3 x + 4}}


The answer is:

323x+4- \frac{3}{2 \sqrt{3 x + 4}}

The graph
02468-8-6-4-2-10100-10
The first derivative [src]
     -3      
-------------
    _________
2*\/ 3*x + 4 
323x+4- \frac{3}{2 \sqrt{3 x + 4}}
The second derivative [src]
      9       
--------------
           3/2
4*(4 + 3*x)   
94(3x+4)32\frac{9}{4 \left(3 x + 4\right)^{\frac{3}{2}}}
The third derivative [src]
     -81      
--------------
           5/2
8*(4 + 3*x)   
818(3x+4)52- \frac{81}{8 \left(3 x + 4\right)^{\frac{5}{2}}}