Mister Exam

Derivative of -36sin(2t)+12cos(2t)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-36*sin(2*t) + 12*cos(2*t)
36sin(2t)+12cos(2t)- 36 \sin{\left(2 t \right)} + 12 \cos{\left(2 t \right)}
-36*sin(2*t) + 12*cos(2*t)
Detail solution
  1. Differentiate 36sin(2t)+12cos(2t)- 36 \sin{\left(2 t \right)} + 12 \cos{\left(2 t \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=2tu = 2 t.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddt2t\frac{d}{d t} 2 t:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: tt goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2t)2 \cos{\left(2 t \right)}

      So, the result is: 72cos(2t)- 72 \cos{\left(2 t \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=2tu = 2 t.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddt2t\frac{d}{d t} 2 t:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: tt goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2sin(2t)- 2 \sin{\left(2 t \right)}

      So, the result is: 24sin(2t)- 24 \sin{\left(2 t \right)}

    The result is: 24sin(2t)72cos(2t)- 24 \sin{\left(2 t \right)} - 72 \cos{\left(2 t \right)}


The answer is:

24sin(2t)72cos(2t)- 24 \sin{\left(2 t \right)} - 72 \cos{\left(2 t \right)}

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
-72*cos(2*t) - 24*sin(2*t)
24sin(2t)72cos(2t)- 24 \sin{\left(2 t \right)} - 72 \cos{\left(2 t \right)}
The second derivative [src]
48*(-cos(2*t) + 3*sin(2*t))
48(3sin(2t)cos(2t))48 \left(3 \sin{\left(2 t \right)} - \cos{\left(2 t \right)}\right)
The third derivative [src]
96*(3*cos(2*t) + sin(2*t))
96(sin(2t)+3cos(2t))96 \left(\sin{\left(2 t \right)} + 3 \cos{\left(2 t \right)}\right)