2 log (x)*sin(x)
d / 2 \ --\log (x)*sin(x)/ dx
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
; to find :
The derivative of sine is cosine:
The result is:
Now simplify:
The answer is:
2 2*log(x)*sin(x) log (x)*cos(x) + --------------- x
2 2*(-1 + log(x))*sin(x) 4*cos(x)*log(x) - log (x)*sin(x) - ---------------------- + --------------- 2 x x
2 6*log(x)*sin(x) 6*(-1 + log(x))*cos(x) 2*(-3 + 2*log(x))*sin(x) - log (x)*cos(x) - --------------- - ---------------------- + ------------------------ x 2 3 x x