Mister Exam

Other calculators


log(x^2)/log(2)

Derivative of log(x^2)/log(2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2\
log\x /
-------
 log(2)
log(x2)log(2)\frac{\log{\left(x^{2} \right)}}{\log{\left(2 \right)}}
  /   / 2\\
d |log\x /|
--|-------|
dx\ log(2)/
ddxlog(x2)log(2)\frac{d}{d x} \frac{\log{\left(x^{2} \right)}}{\log{\left(2 \right)}}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=x2u = x^{2}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} x^{2}:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      The result of the chain rule is:

      2x\frac{2}{x}

    So, the result is: 2xlog(2)\frac{2}{x \log{\left(2 \right)}}


The answer is:

2xlog(2)\frac{2}{x \log{\left(2 \right)}}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
   2    
--------
x*log(2)
2xlog(2)\frac{2}{x \log{\left(2 \right)}}
The second derivative [src]
   -2    
---------
 2       
x *log(2)
2x2log(2)- \frac{2}{x^{2} \log{\left(2 \right)}}
The third derivative [src]
    4    
---------
 3       
x *log(2)
4x3log(2)\frac{4}{x^{3} \log{\left(2 \right)}}
The graph
Derivative of log(x^2)/log(2)