Mister Exam

Other calculators

Derivative of log((x+2)/(-x+2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x + 2 \
log|------|
   \-x + 2/
$$\log{\left(\frac{x + 2}{2 - x} \right)}$$
log((x + 2)/(-x + 2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/  1        x + 2  \         
|------ + ---------|*(-x + 2)
|-x + 2           2|         
\         (-x + 2) /         
-----------------------------
            x + 2            
$$\frac{\left(2 - x\right) \left(\frac{1}{2 - x} + \frac{x + 2}{\left(2 - x\right)^{2}}\right)}{x + 2}$$
The second derivative [src]
/    2 + x \ /    1        1  \
|1 - ------|*|- ------ - -----|
\    -2 + x/ \  -2 + x   2 + x/
-------------------------------
             2 + x             
$$\frac{\left(1 - \frac{x + 2}{x - 2}\right) \left(- \frac{1}{x + 2} - \frac{1}{x - 2}\right)}{x + 2}$$
The third derivative [src]
  /    2 + x \ /    1          1              1        \
2*|1 - ------|*|--------- + -------- + ----------------|
  \    -2 + x/ |        2          2   (-2 + x)*(2 + x)|
               \(-2 + x)    (2 + x)                    /
--------------------------------------------------------
                         2 + x                          
$$\frac{2 \left(1 - \frac{x + 2}{x - 2}\right) \left(\frac{1}{\left(x + 2\right)^{2}} + \frac{1}{\left(x - 2\right) \left(x + 2\right)} + \frac{1}{\left(x - 2\right)^{2}}\right)}{x + 2}$$