log(x) ------------*sin(x) 1 + 2*log(x)
(log(x)/(1 + 2*log(x)))*sin(x)
Apply the quotient rule, which is:
and .
To find :
Apply the product rule:
; to find :
The derivative of is .
; to find :
The derivative of sine is cosine:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of is .
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 1 2*log(x) \ cos(x)*log(x) |---------------- - -----------------|*sin(x) + ------------- |x*(1 + 2*log(x)) 2| 1 + 2*log(x) \ x*(1 + 2*log(x)) /
/ / 4 \ \ | 2*|1 + ------------|*log(x)| | 4 \ 1 + 2*log(x)/ | / 2*log(x) \ |1 + ------------ - ---------------------------|*sin(x) 2*|1 - ------------|*cos(x) \ 1 + 2*log(x) 1 + 2*log(x) / \ 1 + 2*log(x)/ -log(x)*sin(x) - ------------------------------------------------------- + --------------------------- 2 x x ------------------------------------------------------------------------------------------------------ 1 + 2*log(x)
/ / 6 12 \ \ / / 4 \ \ | / 4 \ 2*|1 + ------------ + ---------------|*log(x)| | 2*|1 + ------------|*log(x)| | 3*|1 + ------------| | 1 + 2*log(x) 2| | / 2*log(x) \ | 4 \ 1 + 2*log(x)/ | | 3 \ 1 + 2*log(x)/ \ (1 + 2*log(x)) / | 3*|1 - ------------|*sin(x) 3*|1 + ------------ - ---------------------------|*cos(x) 2*|1 + ------------ + -------------------- - ---------------------------------------------|*sin(x) \ 1 + 2*log(x)/ \ 1 + 2*log(x) 1 + 2*log(x) / \ 1 + 2*log(x) 1 + 2*log(x) 1 + 2*log(x) / -cos(x)*log(x) - --------------------------- - --------------------------------------------------------- + -------------------------------------------------------------------------------------------------- x 2 3 x x ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 + 2*log(x)