Mister Exam

Other calculators

Derivative of (log^3)(2x+3)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3             2
log (x)*(2*x + 3) 
(2x+3)2log(x)3\left(2 x + 3\right)^{2} \log{\left(x \right)}^{3}
log(x)^3*(2*x + 3)^2
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=log(x)3f{\left(x \right)} = \log{\left(x \right)}^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=log(x)u = \log{\left(x \right)}.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result of the chain rule is:

      3log(x)2x\frac{3 \log{\left(x \right)}^{2}}{x}

    g(x)=(2x+3)2g{\left(x \right)} = \left(2 x + 3\right)^{2}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2x+3u = 2 x + 3.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(2x+3)\frac{d}{d x} \left(2 x + 3\right):

      1. Differentiate 2x+32 x + 3 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        2. The derivative of the constant 33 is zero.

        The result is: 22

      The result of the chain rule is:

      8x+128 x + 12

    The result is: (8x+12)log(x)3+3(2x+3)2log(x)2x\left(8 x + 12\right) \log{\left(x \right)}^{3} + \frac{3 \left(2 x + 3\right)^{2} \log{\left(x \right)}^{2}}{x}

  2. Now simplify:

    (2x+3)(4xlog(x)+6x+9)log(x)2x\frac{\left(2 x + 3\right) \left(4 x \log{\left(x \right)} + 6 x + 9\right) \log{\left(x \right)}^{2}}{x}


The answer is:

(2x+3)(4xlog(x)+6x+9)log(x)2x\frac{\left(2 x + 3\right) \left(4 x \log{\left(x \right)} + 6 x + 9\right) \log{\left(x \right)}^{2}}{x}

The graph
02468-8-6-4-2-1010-500010000
The first derivative [src]
                                2    2   
   3                 3*(2*x + 3) *log (x)
log (x)*(12 + 8*x) + --------------------
                              x          
(8x+12)log(x)3+3(2x+3)2log(x)2x\left(8 x + 12\right) \log{\left(x \right)}^{3} + \frac{3 \left(2 x + 3\right)^{2} \log{\left(x \right)}^{2}}{x}
The second derivative [src]
/                       2                                    \       
|     2      3*(3 + 2*x) *(-2 + log(x))   24*(3 + 2*x)*log(x)|       
|8*log (x) - -------------------------- + -------------------|*log(x)
|                         2                        x         |       
\                        x                                   /       
(8log(x)2+24(2x+3)log(x)x3(2x+3)2(log(x)2)x2)log(x)\left(8 \log{\left(x \right)}^{2} + \frac{24 \left(2 x + 3\right) \log{\left(x \right)}}{x} - \frac{3 \left(2 x + 3\right)^{2} \left(\log{\left(x \right)} - 2\right)}{x^{2}}\right) \log{\left(x \right)}
The third derivative [src]
  /                      2 /       2              \                                   \
  |      2      (3 + 2*x) *\1 + log (x) - 3*log(x)/   6*(-2 + log(x))*(3 + 2*x)*log(x)|
6*|12*log (x) + ----------------------------------- - --------------------------------|
  |                               2                                  x                |
  \                              x                                                    /
---------------------------------------------------------------------------------------
                                           x                                           
6(12log(x)26(2x+3)(log(x)2)log(x)x+(2x+3)2(log(x)23log(x)+1)x2)x\frac{6 \left(12 \log{\left(x \right)}^{2} - \frac{6 \left(2 x + 3\right) \left(\log{\left(x \right)} - 2\right) \log{\left(x \right)}}{x} + \frac{\left(2 x + 3\right)^{2} \left(\log{\left(x \right)}^{2} - 3 \log{\left(x \right)} + 1\right)}{x^{2}}\right)}{x}