Mister Exam

Other calculators

Derivative of log(tan)^(2)*(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2          
log (tan(x))*x
$$x \log{\left(\tan{\left(x \right)} \right)}^{2}$$
log(tan(x))^2*x
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of sine is cosine:

          To find :

          1. The derivative of cosine is negative sine:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. Apply the power rule: goes to

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                   /       2   \            
   2           2*x*\1 + tan (x)/*log(tan(x))
log (tan(x)) + -----------------------------
                           tan(x)           
$$\frac{2 x \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan{\left(x \right)}} + \log{\left(\tan{\left(x \right)} \right)}^{2}$$
The second derivative [src]
                /  /                       2      /       2   \            \                \
  /       2   \ |  |                1 + tan (x)   \1 + tan (x)/*log(tan(x))|   2*log(tan(x))|
2*\1 + tan (x)/*|x*|2*log(tan(x)) + ----------- - -------------------------| + -------------|
                |  |                     2                    2            |       tan(x)   |
                \  \                  tan (x)              tan (x)         /                /
$$2 \left(x \left(- \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan^{2}{\left(x \right)}} + \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} + 2 \log{\left(\tan{\left(x \right)} \right)}\right) + \frac{2 \log{\left(\tan{\left(x \right)} \right)}}{\tan{\left(x \right)}}\right) \left(\tan^{2}{\left(x \right)} + 1\right)$$
The third derivative [src]
                /                  /                 2                                                                                         2            \                                                \
                |                  |    /       2   \                             /       2   \     /       2   \                 /       2   \             |     /       2   \     /       2   \            |
  /       2   \ |                  |  3*\1 + tan (x)/                           6*\1 + tan (x)/   4*\1 + tan (x)/*log(tan(x))   2*\1 + tan (x)/ *log(tan(x))|   3*\1 + tan (x)/   3*\1 + tan (x)/*log(tan(x))|
2*\1 + tan (x)/*|6*log(tan(x)) + x*|- ---------------- + 4*log(tan(x))*tan(x) + --------------- - --------------------------- + ----------------------------| + --------------- - ---------------------------|
                |                  |         3                                       tan(x)                  tan(x)                          3              |          2                       2             |
                \                  \      tan (x)                                                                                         tan (x)           /       tan (x)                 tan (x)          /
$$2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(x \left(\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \log{\left(\tan{\left(x \right)} \right)}}{\tan^{3}{\left(x \right)}} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan{\left(x \right)}} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} + 4 \log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}\right) - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan^{2}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan^{2}{\left(x \right)}} + 6 \log{\left(\tan{\left(x \right)} \right)}\right)$$