Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
; to find :
-
Apply the power rule: goes to
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/ 2 \
2 2*x*\1 + tan (x)/*log(tan(x))
log (tan(x)) + -----------------------------
tan(x)
$$\frac{2 x \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan{\left(x \right)}} + \log{\left(\tan{\left(x \right)} \right)}^{2}$$
The second derivative
[src]
/ / 2 / 2 \ \ \
/ 2 \ | | 1 + tan (x) \1 + tan (x)/*log(tan(x))| 2*log(tan(x))|
2*\1 + tan (x)/*|x*|2*log(tan(x)) + ----------- - -------------------------| + -------------|
| | 2 2 | tan(x) |
\ \ tan (x) tan (x) / /
$$2 \left(x \left(- \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan^{2}{\left(x \right)}} + \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} + 2 \log{\left(\tan{\left(x \right)} \right)}\right) + \frac{2 \log{\left(\tan{\left(x \right)} \right)}}{\tan{\left(x \right)}}\right) \left(\tan^{2}{\left(x \right)} + 1\right)$$
The third derivative
[src]
/ / 2 2 \ \
| | / 2 \ / 2 \ / 2 \ / 2 \ | / 2 \ / 2 \ |
/ 2 \ | | 3*\1 + tan (x)/ 6*\1 + tan (x)/ 4*\1 + tan (x)/*log(tan(x)) 2*\1 + tan (x)/ *log(tan(x))| 3*\1 + tan (x)/ 3*\1 + tan (x)/*log(tan(x))|
2*\1 + tan (x)/*|6*log(tan(x)) + x*|- ---------------- + 4*log(tan(x))*tan(x) + --------------- - --------------------------- + ----------------------------| + --------------- - ---------------------------|
| | 3 tan(x) tan(x) 3 | 2 2 |
\ \ tan (x) tan (x) / tan (x) tan (x) /
$$2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(x \left(\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \log{\left(\tan{\left(x \right)} \right)}}{\tan^{3}{\left(x \right)}} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan{\left(x \right)}} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} + 4 \log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}\right) - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan^{2}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan^{2}{\left(x \right)}} + 6 \log{\left(\tan{\left(x \right)} \right)}\right)$$