Mister Exam

Other calculators

Derivative of log(1-2*x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /       3\
log\1 - 2*x /
$$\log{\left(1 - 2 x^{3} \right)}$$
log(1 - 2*x^3)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     2  
 -6*x   
--------
       3
1 - 2*x 
$$- \frac{6 x^{2}}{1 - 2 x^{3}}$$
The second derivative [src]
     /          3  \
     |       3*x   |
12*x*|1 - ---------|
     |            3|
     \    -1 + 2*x /
--------------------
             3      
     -1 + 2*x       
$$\frac{12 x \left(- \frac{3 x^{3}}{2 x^{3} - 1} + 1\right)}{2 x^{3} - 1}$$
9-я производная [src]
       /             15             9            3            6               12             18 \
       |     629856*x        87480*x        324*x       9396*x        349920*x       419904*x   |
967680*|1 - ------------ - ------------ - --------- + ------------ + ------------ + ------------|
       |               5              3           3              2              4              6|
       |    /        3\    /        3\    -1 + 2*x    /        3\    /        3\    /        3\ |
       \    \-1 + 2*x /    \-1 + 2*x /                \-1 + 2*x /    \-1 + 2*x /    \-1 + 2*x / /
-------------------------------------------------------------------------------------------------
                                                      3                                          
                                           /        3\                                           
                                           \-1 + 2*x /                                           
$$\frac{967680 \left(\frac{419904 x^{18}}{\left(2 x^{3} - 1\right)^{6}} - \frac{629856 x^{15}}{\left(2 x^{3} - 1\right)^{5}} + \frac{349920 x^{12}}{\left(2 x^{3} - 1\right)^{4}} - \frac{87480 x^{9}}{\left(2 x^{3} - 1\right)^{3}} + \frac{9396 x^{6}}{\left(2 x^{3} - 1\right)^{2}} - \frac{324 x^{3}}{2 x^{3} - 1} + 1\right)}{\left(2 x^{3} - 1\right)^{3}}$$
The third derivative [src]
   /          3            6    \
   |      18*x         36*x     |
12*|1 - --------- + ------------|
   |            3              2|
   |    -1 + 2*x    /        3\ |
   \                \-1 + 2*x / /
---------------------------------
                    3            
            -1 + 2*x             
$$\frac{12 \left(\frac{36 x^{6}}{\left(2 x^{3} - 1\right)^{2}} - \frac{18 x^{3}}{2 x^{3} - 1} + 1\right)}{2 x^{3} - 1}$$