Mister Exam

Other calculators

Derivative of log(1/(x-1),exp)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  1     x\
log|-----, e |
   \x - 1    /
$$\log{\left(\frac{1}{x - 1} \right)}$$
log(1/(x - 1), exp(x))
The graph
The first derivative [src]
          /     /   /  1  \\\|          
          |     |log|-----||||          
    1     |  d  |   \x - 1/|||         x
- ----- + |-----|----------|||      x*e 
  x - 1   \dxi_2\log(xi_2) //|xi_2=e    
$$e^{x} \left. \frac{\partial}{\partial \xi_{2}} \frac{\log{\left(\frac{1}{x - 1} \right)}}{\log{\left(\xi_{2} \right)}} \right|_{\substack{ \xi_{2}=e^{x} }} - \frac{1}{x - 1}$$
The second derivative [src]
              1      /    2\    /  1   \   /     /   /  1   \\\|          
            ------ + |1 + -|*log|------|   |     |log|------||||          
    1       -1 + x   \    x/    \-1 + x/   |  d  |   \-1 + x/|||         x
--------- + ---------------------------- + |-----|-----------|||      x*e 
        2                 2                \dxi_2\ log(xi_2) //|xi_2=e    
(-1 + x)                 x                                                
$$e^{x} \left. \frac{\partial}{\partial \xi_{2}} \frac{\log{\left(\frac{1}{x - 1} \right)}}{\log{\left(\xi_{2} \right)}} \right|_{\substack{ \xi_{2}=e^{x} }} + \frac{1}{\left(x - 1\right)^{2}} + \frac{\left(1 + \frac{2}{x}\right) \log{\left(\frac{1}{x - 1} \right)} + \frac{1}{x - 1}}{x^{2}}$$
The third derivative [src]
                                                                         2                                            /  1   \     /    2\    /  1   \                                   
                                                                     1 + -                                       2*log|------|   2*|1 + -|*log|------|                                   
                                                  1          1           x    /    2\    /  1   \       2             \-1 + x/     \    x/    \-1 + x/                                   
              /     /   /  1   \\\|             ------ + --------- + ------ + |1 + -|*log|------| + ---------- + ------------- + ---------------------     /  1      /    2\    /  1   \\
              |     |log|------||||             -1 + x           2   -1 + x   \    x/    \-1 + x/   x*(-1 + x)          2                  x             2*|------ + |1 + -|*log|------||
      2       |  d  |   \-1 + x/|||         x            (-1 + x)                                                      x                                   \-1 + x   \    x/    \-1 + x//
- --------- + |-----|-----------|||      x*e  - ------------------------------------------------------------------------------------------------------ + --------------------------------
          3   \dxi_2\ log(xi_2) //|xi_2=e                                                          2                                                                     2               
  (-1 + x)                                                                                        x                                                                     x                
$$e^{x} \left. \frac{\partial}{\partial \xi_{2}} \frac{\log{\left(\frac{1}{x - 1} \right)}}{\log{\left(\xi_{2} \right)}} \right|_{\substack{ \xi_{2}=e^{x} }} - \frac{2}{\left(x - 1\right)^{3}} + \frac{2 \left(\left(1 + \frac{2}{x}\right) \log{\left(\frac{1}{x - 1} \right)} + \frac{1}{x - 1}\right)}{x^{2}} - \frac{\left(1 + \frac{2}{x}\right) \log{\left(\frac{1}{x - 1} \right)} + \frac{1 + \frac{2}{x}}{x - 1} + \frac{1}{x - 1} + \frac{1}{\left(x - 1\right)^{2}} + \frac{2 \left(1 + \frac{2}{x}\right) \log{\left(\frac{1}{x - 1} \right)}}{x} + \frac{2}{x \left(x - 1\right)} + \frac{2 \log{\left(\frac{1}{x - 1} \right)}}{x^{2}}}{x^{2}}$$