Mister Exam

Other calculators

Derivative of log(absolute(2x+5))/log(10)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(|2*x + 5|)
--------------
   log(10)    
$$\frac{\log{\left(\left|{2 x + 5}\right| \right)}}{\log{\left(10 \right)}}$$
log(|2*x + 5|)/log(10)
The graph
The first derivative [src]
 2*sign(5 + 2*x) 
-----------------
|2*x + 5|*log(10)
$$\frac{2 \operatorname{sign}{\left(2 x + 5 \right)}}{\log{\left(10 \right)} \left|{2 x + 5}\right|}$$
The second derivative [src]
  /      2                                 \
  |  sign (5 + 2*x)   2*DiracDelta(5 + 2*x)|
4*|- -------------- + ---------------------|
  |             2           |5 + 2*x|      |
  \    (5 + 2*x)                           /
--------------------------------------------
                  log(10)                   
$$\frac{4 \left(\frac{2 \delta\left(2 x + 5\right)}{\left|{2 x + 5}\right|} - \frac{\operatorname{sign}^{2}{\left(2 x + 5 \right)}}{\left(2 x + 5\right)^{2}}\right)}{\log{\left(10 \right)}}$$
The third derivative [src]
   /    2                                                                        \
   |sign (5 + 2*x)   DiracDelta(5 + 2*x, 1)   3*DiracDelta(5 + 2*x)*sign(5 + 2*x)|
16*|-------------- + ---------------------- - -----------------------------------|
   |           3           |5 + 2*x|                                2            |
   \  (5 + 2*x)                                            (5 + 2*x)             /
----------------------------------------------------------------------------------
                                     log(10)                                      
$$\frac{16 \left(\frac{\delta^{\left( 1 \right)}\left( 2 x + 5 \right)}{\left|{2 x + 5}\right|} - \frac{3 \delta\left(2 x + 5\right) \operatorname{sign}{\left(2 x + 5 \right)}}{\left(2 x + 5\right)^{2}} + \frac{\operatorname{sign}^{2}{\left(2 x + 5 \right)}}{\left(2 x + 5\right)^{3}}\right)}{\log{\left(10 \right)}}$$