4 /log(cos(3*x))\ |-------------| \ log(5) /
(log(cos(3*x))/log(5))^4
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
So, the result is:
The result of the chain rule is:
Now simplify:
The answer is:
4
log (cos(3*x))
-12*--------------*sin(3*x)
4
log (5)
---------------------------
cos(3*x)*log(cos(3*x))
/ 2 2 \
2 | 3*sin (3*x) sin (3*x)*log(cos(3*x))|
36*log (cos(3*x))*|-log(cos(3*x)) + ----------- - -----------------------|
| 2 2 |
\ cos (3*x) cos (3*x) /
--------------------------------------------------------------------------
4
log (5)
/ 2 2 2 2 \
| 2 6*sin (3*x) 2*log (cos(3*x))*sin (3*x) 9*sin (3*x)*log(cos(3*x))|
108*|- 2*log (cos(3*x)) + 9*log(cos(3*x)) - ----------- - -------------------------- + -------------------------|*log(cos(3*x))*sin(3*x)
| 2 2 2 |
\ cos (3*x) cos (3*x) cos (3*x) /
----------------------------------------------------------------------------------------------------------------------------------------
4
cos(3*x)*log (5)