4 /log(cos(3*x))\ |-------------| \ log(5) /
(log(cos(3*x))/log(5))^4
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
So, the result is:
The result of the chain rule is:
Now simplify:
The answer is:
4 log (cos(3*x)) -12*--------------*sin(3*x) 4 log (5) --------------------------- cos(3*x)*log(cos(3*x))
/ 2 2 \ 2 | 3*sin (3*x) sin (3*x)*log(cos(3*x))| 36*log (cos(3*x))*|-log(cos(3*x)) + ----------- - -----------------------| | 2 2 | \ cos (3*x) cos (3*x) / -------------------------------------------------------------------------- 4 log (5)
/ 2 2 2 2 \ | 2 6*sin (3*x) 2*log (cos(3*x))*sin (3*x) 9*sin (3*x)*log(cos(3*x))| 108*|- 2*log (cos(3*x)) + 9*log(cos(3*x)) - ----------- - -------------------------- + -------------------------|*log(cos(3*x))*sin(3*x) | 2 2 2 | \ cos (3*x) cos (3*x) cos (3*x) / ---------------------------------------------------------------------------------------------------------------------------------------- 4 cos(3*x)*log (5)