Mister Exam

Other calculators


(log(4x-2)/log(3))/ctg(2x)

Derivative of (log(4x-2)/log(3))/ctg(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  log(4*x - 2) 
---------------
log(3)*cot(2*x)
$$\frac{\log{\left(4 x - 2 \right)}}{\log{\left(3 \right)} \cot{\left(2 x \right)}}$$
d /  log(4*x - 2) \
--|---------------|
dx\log(3)*cot(2*x)/
$$\frac{d}{d x} \frac{\log{\left(4 x - 2 \right)}}{\log{\left(3 \right)} \cot{\left(2 x \right)}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      To find :

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. Let .

            2. The derivative of sine is cosine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            To find :

            1. Let .

            2. The derivative of cosine is negative sine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            Now plug in to the quotient rule:

          The result of the chain rule is:

        Method #2

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

      Now plug in to the quotient rule:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                            /         2     \             
            4               \2 + 2*cot (2*x)/*log(4*x - 2)
------------------------- + ------------------------------
(4*x - 2)*cot(2*x)*log(3)             2                   
                                   cot (2*x)*log(3)       
$$\frac{\left(2 \cot^{2}{\left(2 x \right)} + 2\right) \log{\left(4 x - 2 \right)}}{\log{\left(3 \right)} \cot^{2}{\left(2 x \right)}} + \frac{4}{\left(4 x - 2\right) \log{\left(3 \right)} \cot{\left(2 x \right)}}$$
The second derivative [src]
  /                   /       2     \                      /            2     \                  \
  |       1         2*\1 + cot (2*x)/      /       2     \ |     1 + cot (2*x)|                  |
4*|- ----------- + ------------------- + 2*\1 + cot (2*x)/*|-1 + -------------|*log(2*(-1 + 2*x))|
  |            2   (-1 + 2*x)*cot(2*x)                     |          2       |                  |
  \  (-1 + 2*x)                                            \       cot (2*x)  /                  /
--------------------------------------------------------------------------------------------------
                                         cot(2*x)*log(3)                                          
$$\frac{4 \cdot \left(2 \left(-1 + \frac{\cot^{2}{\left(2 x \right)} + 1}{\cot^{2}{\left(2 x \right)}}\right) \left(\cot^{2}{\left(2 x \right)} + 1\right) \log{\left(2 \cdot \left(2 x - 1\right) \right)} + \frac{2 \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\left(2 x - 1\right) \cot{\left(2 x \right)}} - \frac{1}{\left(2 x - 1\right)^{2}}\right)}{\log{\left(3 \right)} \cot{\left(2 x \right)}}$$
The third derivative [src]
  /                                                                                                                                                   /            2     \\
  |                                                                                                                                   /       2     \ |     1 + cot (2*x)||
  |                         /                                   2                    3\                                             6*\1 + cot (2*x)/*|-1 + -------------||
  |                         |                    /       2     \      /       2     \ |                         /       2     \                       |          2       ||
  |         2               |         2        5*\1 + cot (2*x)/    3*\1 + cot (2*x)/ |                       3*\1 + cot (2*x)/                       \       cot (2*x)  /|
8*|-------------------- + 2*|2 + 2*cot (2*x) - ------------------ + ------------------|*log(2*(-1 + 2*x)) - --------------------- + --------------------------------------|
  |          3              |                         2                    4          |                               2    2                 (-1 + 2*x)*cot(2*x)          |
  \(-1 + 2*x) *cot(2*x)     \                      cot (2*x)            cot (2*x)     /                     (-1 + 2*x) *cot (2*x)                                         /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                   log(3)                                                                                  
$$\frac{8 \cdot \left(2 \cdot \left(2 \cot^{2}{\left(2 x \right)} - \frac{5 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{2}}{\cot^{2}{\left(2 x \right)}} + 2 + \frac{3 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{3}}{\cot^{4}{\left(2 x \right)}}\right) \log{\left(2 \cdot \left(2 x - 1\right) \right)} + \frac{6 \left(-1 + \frac{\cot^{2}{\left(2 x \right)} + 1}{\cot^{2}{\left(2 x \right)}}\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\left(2 x - 1\right) \cot{\left(2 x \right)}} - \frac{3 \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\left(2 x - 1\right)^{2} \cot^{2}{\left(2 x \right)}} + \frac{2}{\left(2 x - 1\right)^{3} \cot{\left(2 x \right)}}\right)}{\log{\left(3 \right)}}$$
The graph
Derivative of (log(4x-2)/log(3))/ctg(2x)