2
cos (x)
(log(2*x))
/ 2 \ d | cos (x)| --\(log(2*x)) / dx
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
2 / 2 \
cos (x) | cos (x) |
(log(2*x)) *|---------- - 2*cos(x)*log(log(2*x))*sin(x)|
\x*log(2*x) /
2 / 2 2 2 \
cos (x) |/ cos(x) \ 2 2 2 cos (x) cos (x) 4*cos(x)*sin(x)|
(log(2*x)) *||2*log(log(2*x))*sin(x) - ----------| *cos (x) - 2*cos (x)*log(log(2*x)) + 2*sin (x)*log(log(2*x)) - ----------- - ------------ - ---------------|
|\ x*log(2*x)/ 2 2 2 x*log(2*x) |
\ x *log(2*x) x *log (2*x) /
2 / 3 2 2 2 2 / 2 2 \ 2 \
cos (x) | / cos(x) \ 3 6*cos (x) 2*cos (x) 2*cos (x) 3*cos (x) / cos(x) \ | 2 2 cos (x) cos (x) 4*cos(x)*sin(x)| 6*sin (x) 6*cos(x)*sin(x) 6*cos(x)*sin(x)|
(log(2*x)) *|- |2*log(log(2*x))*sin(x) - ----------| *cos (x) - ---------- + ----------- + ------------ + ------------ + 3*|2*log(log(2*x))*sin(x) - ----------|*|- 2*sin (x)*log(log(2*x)) + 2*cos (x)*log(log(2*x)) + ----------- + ------------ + ---------------|*cos(x) + ---------- + 8*cos(x)*log(log(2*x))*sin(x) + --------------- + ---------------|
| \ x*log(2*x)/ x*log(2*x) 3 3 3 3 2 \ x*log(2*x)/ | 2 2 2 x*log(2*x) | x*log(2*x) 2 2 2 |
\ x *log(2*x) x *log (2*x) x *log (2*x) \ x *log(2*x) x *log (2*x) / x *log(2*x) x *log (2*x) /