Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
2 / 2 \
cos (x) | cos (x) |
(log(2*x)) *|---------- - 2*cos(x)*log(log(2*x))*sin(x)|
\x*log(2*x) /
$$\left(- 2 \log{\left(\log{\left(2 x \right)} \right)} \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cos^{2}{\left(x \right)}}{x \log{\left(2 x \right)}}\right) \log{\left(2 x \right)}^{\cos^{2}{\left(x \right)}}$$
The second derivative
[src]
2 / 2 2 2 \
cos (x) |/ cos(x) \ 2 2 2 cos (x) cos (x) 4*cos(x)*sin(x)|
(log(2*x)) *||2*log(log(2*x))*sin(x) - ----------| *cos (x) - 2*cos (x)*log(log(2*x)) + 2*sin (x)*log(log(2*x)) - ----------- - ------------ - ---------------|
|\ x*log(2*x)/ 2 2 2 x*log(2*x) |
\ x *log(2*x) x *log (2*x) /
$$\left(\left(2 \log{\left(\log{\left(2 x \right)} \right)} \sin{\left(x \right)} - \frac{\cos{\left(x \right)}}{x \log{\left(2 x \right)}}\right)^{2} \cos^{2}{\left(x \right)} + 2 \log{\left(\log{\left(2 x \right)} \right)} \sin^{2}{\left(x \right)} - 2 \log{\left(\log{\left(2 x \right)} \right)} \cos^{2}{\left(x \right)} - \frac{4 \sin{\left(x \right)} \cos{\left(x \right)}}{x \log{\left(2 x \right)}} - \frac{\cos^{2}{\left(x \right)}}{x^{2} \log{\left(2 x \right)}} - \frac{\cos^{2}{\left(x \right)}}{x^{2} \log{\left(2 x \right)}^{2}}\right) \log{\left(2 x \right)}^{\cos^{2}{\left(x \right)}}$$
The third derivative
[src]
2 / 3 2 2 2 2 / 2 2 \ 2 \
cos (x) | / cos(x) \ 3 6*cos (x) 2*cos (x) 2*cos (x) 3*cos (x) / cos(x) \ | 2 2 cos (x) cos (x) 4*cos(x)*sin(x)| 6*sin (x) 6*cos(x)*sin(x) 6*cos(x)*sin(x)|
(log(2*x)) *|- |2*log(log(2*x))*sin(x) - ----------| *cos (x) - ---------- + ----------- + ------------ + ------------ + 3*|2*log(log(2*x))*sin(x) - ----------|*|- 2*sin (x)*log(log(2*x)) + 2*cos (x)*log(log(2*x)) + ----------- + ------------ + ---------------|*cos(x) + ---------- + 8*cos(x)*log(log(2*x))*sin(x) + --------------- + ---------------|
| \ x*log(2*x)/ x*log(2*x) 3 3 3 3 2 \ x*log(2*x)/ | 2 2 2 x*log(2*x) | x*log(2*x) 2 2 2 |
\ x *log(2*x) x *log (2*x) x *log (2*x) \ x *log(2*x) x *log (2*x) / x *log(2*x) x *log (2*x) /
$$\left(- \left(2 \log{\left(\log{\left(2 x \right)} \right)} \sin{\left(x \right)} - \frac{\cos{\left(x \right)}}{x \log{\left(2 x \right)}}\right)^{3} \cos^{3}{\left(x \right)} + 3 \cdot \left(2 \log{\left(\log{\left(2 x \right)} \right)} \sin{\left(x \right)} - \frac{\cos{\left(x \right)}}{x \log{\left(2 x \right)}}\right) \left(- 2 \log{\left(\log{\left(2 x \right)} \right)} \sin^{2}{\left(x \right)} + 2 \log{\left(\log{\left(2 x \right)} \right)} \cos^{2}{\left(x \right)} + \frac{4 \sin{\left(x \right)} \cos{\left(x \right)}}{x \log{\left(2 x \right)}} + \frac{\cos^{2}{\left(x \right)}}{x^{2} \log{\left(2 x \right)}} + \frac{\cos^{2}{\left(x \right)}}{x^{2} \log{\left(2 x \right)}^{2}}\right) \cos{\left(x \right)} + 8 \log{\left(\log{\left(2 x \right)} \right)} \sin{\left(x \right)} \cos{\left(x \right)} + \frac{6 \sin^{2}{\left(x \right)}}{x \log{\left(2 x \right)}} - \frac{6 \cos^{2}{\left(x \right)}}{x \log{\left(2 x \right)}} + \frac{6 \sin{\left(x \right)} \cos{\left(x \right)}}{x^{2} \log{\left(2 x \right)}} + \frac{6 \sin{\left(x \right)} \cos{\left(x \right)}}{x^{2} \log{\left(2 x \right)}^{2}} + \frac{2 \cos^{2}{\left(x \right)}}{x^{3} \log{\left(2 x \right)}} + \frac{3 \cos^{2}{\left(x \right)}}{x^{3} \log{\left(2 x \right)}^{2}} + \frac{2 \cos^{2}{\left(x \right)}}{x^{3} \log{\left(2 x \right)}^{3}}\right) \log{\left(2 x \right)}^{\cos^{2}{\left(x \right)}}$$