Mister Exam

Other calculators

Derivative of log2(x+1/(2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /     1 \
log|x + ---|
   \    2*x/
------------
   log(2)   
$$\frac{\log{\left(x + \frac{1}{2 x} \right)}}{\log{\left(2 \right)}}$$
log(x + 1/(2*x))/log(2)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       / 1 \    
       |---|    
       \2*x/    
   1 - -----    
         x      
----------------
/     1 \       
|x + ---|*log(2)
\    2*x/       
$$\frac{- \frac{\frac{1}{2} \frac{1}{x}}{x} + 1}{\left(x + \frac{1}{2 x}\right) \log{\left(2 \right)}}$$
The second derivative [src]
 /               2\ 
 |       /    1 \ | 
 |       |2 - --| | 
 |       |     2| | 
 |  2    \    x / | 
-|- -- + ---------| 
 |   3    1       | 
 |  x     - + 2*x | 
 \        x       / 
--------------------
  /1      \         
  |- + 2*x|*log(2)  
  \x      /         
$$- \frac{\frac{\left(2 - \frac{1}{x^{2}}\right)^{2}}{2 x + \frac{1}{x}} - \frac{2}{x^{3}}}{\left(2 x + \frac{1}{x}\right) \log{\left(2 \right)}}$$
The third derivative [src]
   /             3                \
   |     /    1 \        /    1 \ |
   |     |2 - --|      3*|2 - --| |
   |     |     2|        |     2| |
   |3    \    x /        \    x / |
-2*|-- - ---------- + ------------|
   | 4            2    3 /1      \|
   |x    /1      \    x *|- + 2*x||
   |     |- + 2*x|       \x      /|
   \     \x      /                /
-----------------------------------
          /1      \                
          |- + 2*x|*log(2)         
          \x      /                
$$- \frac{2 \left(- \frac{\left(2 - \frac{1}{x^{2}}\right)^{3}}{\left(2 x + \frac{1}{x}\right)^{2}} + \frac{3 \left(2 - \frac{1}{x^{2}}\right)}{x^{3} \left(2 x + \frac{1}{x}\right)} + \frac{3}{x^{4}}\right)}{\left(2 x + \frac{1}{x}\right) \log{\left(2 \right)}}$$