Mister Exam

Derivative of lnx^2-1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2       
log (x) - 1
log(x)21\log{\left(x \right)}^{2} - 1
d /   2       \
--\log (x) - 1/
dx             
ddx(log(x)21)\frac{d}{d x} \left(\log{\left(x \right)}^{2} - 1\right)
Detail solution
  1. Differentiate log(x)21\log{\left(x \right)}^{2} - 1 term by term:

    1. Let u=log(x)u = \log{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result of the chain rule is:

      2log(x)x\frac{2 \log{\left(x \right)}}{x}

    4. The derivative of the constant (1)1\left(-1\right) 1 is zero.

    The result is: 2log(x)x\frac{2 \log{\left(x \right)}}{x}


The answer is:

2log(x)x\frac{2 \log{\left(x \right)}}{x}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
2*log(x)
--------
   x    
2log(x)x\frac{2 \log{\left(x \right)}}{x}
The second derivative [src]
2*(1 - log(x))
--------------
       2      
      x       
2(log(x)+1)x2\frac{2 \cdot \left(- \log{\left(x \right)} + 1\right)}{x^{2}}
The third derivative [src]
2*(-3 + 2*log(x))
-----------------
         3       
        x        
2(2log(x)3)x3\frac{2 \cdot \left(2 \log{\left(x \right)} - 3\right)}{x^{3}}
The graph
Derivative of lnx^2-1