2 log (x) - 1
d / 2 \ --\log (x) - 1/ dx
Differentiate log(x)2−1\log{\left(x \right)}^{2} - 1log(x)2−1 term by term:
Let u=log(x)u = \log{\left(x \right)}u=log(x).
Apply the power rule: u2u^{2}u2 goes to 2u2 u2u
Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}dxdlog(x):
The derivative of log(x)\log{\left(x \right)}log(x) is 1x\frac{1}{x}x1.
The result of the chain rule is:
The derivative of the constant (−1)1\left(-1\right) 1(−1)1 is zero.
The result is: 2log(x)x\frac{2 \log{\left(x \right)}}{x}x2log(x)
The answer is:
2*log(x) -------- x
2*(1 - log(x)) -------------- 2 x
2*(-3 + 2*log(x)) ----------------- 3 x