Mister Exam

Derivative of (lnx+x)/(lnx-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x) + x
----------
log(x) - x
$$\frac{x + \log{\left(x \right)}}{- x + \log{\left(x \right)}}$$
d /log(x) + x\
--|----------|
dx\log(x) - x/
$$\frac{d}{d x} \frac{x + \log{\left(x \right)}}{- x + \log{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of is .

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of is .

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      1      /    1\             
  1 + -      |1 - -|*(log(x) + x)
      x      \    x/             
---------- + --------------------
log(x) - x                  2    
                (log(x) - x)     
$$\frac{\left(1 - \frac{1}{x}\right) \left(x + \log{\left(x \right)}\right)}{\left(- x + \log{\left(x \right)}\right)^{2}} + \frac{1 + \frac{1}{x}}{- x + \log{\left(x \right)}}$$
The second derivative [src]
                  /                2\                    
                  |         /    1\ |                    
                  |       2*|1 - -| |                    
                  |  1      \    x/ |                    
     (x + log(x))*|- -- + ----------|     /    1\ /    1\
                  |   2   x - log(x)|   2*|1 + -|*|1 - -|
1                 \  x              /     \    x/ \    x/
-- - -------------------------------- + -----------------
 2              x - log(x)                  x - log(x)   
x                                                        
---------------------------------------------------------
                        x - log(x)                       
$$\frac{\frac{2 \cdot \left(1 - \frac{1}{x}\right) \left(1 + \frac{1}{x}\right)}{x - \log{\left(x \right)}} - \frac{\left(x + \log{\left(x \right)}\right) \left(\frac{2 \left(1 - \frac{1}{x}\right)^{2}}{x - \log{\left(x \right)}} - \frac{1}{x^{2}}\right)}{x - \log{\left(x \right)}} + \frac{1}{x^{2}}}{x - \log{\left(x \right)}}$$
The third derivative [src]
 /                    /                3                   \                               /                2\\ 
 |                    |         /    1\          /    1\   |                               |         /    1\ || 
 |                    |       3*|1 - -|        3*|1 - -|   |                               |       2*|1 - -| || 
 |                    |1        \    x/          \    x/   |                       /    1\ |  1      \    x/ || 
 |     2*(x + log(x))*|-- - ------------- + ---------------|        /    1\      3*|1 + -|*|- -- + ----------|| 
 |                    | 3               2    2             |      3*|1 - -|        \    x/ |   2   x - log(x)|| 
 |2                   \x    (x - log(x))    x *(x - log(x))/        \    x/                \  x              /| 
-|-- + ----------------------------------------------------- + --------------- + -----------------------------| 
 | 3                         x - log(x)                         2                          x - log(x)         | 
 \x                                                            x *(x - log(x))                                / 
----------------------------------------------------------------------------------------------------------------
                                                   x - log(x)                                                   
$$- \frac{\frac{3 \cdot \left(1 + \frac{1}{x}\right) \left(\frac{2 \left(1 - \frac{1}{x}\right)^{2}}{x - \log{\left(x \right)}} - \frac{1}{x^{2}}\right)}{x - \log{\left(x \right)}} + \frac{2 \left(x + \log{\left(x \right)}\right) \left(- \frac{3 \left(1 - \frac{1}{x}\right)^{3}}{\left(x - \log{\left(x \right)}\right)^{2}} + \frac{3 \cdot \left(1 - \frac{1}{x}\right)}{x^{2} \left(x - \log{\left(x \right)}\right)} + \frac{1}{x^{3}}\right)}{x - \log{\left(x \right)}} + \frac{3 \cdot \left(1 - \frac{1}{x}\right)}{x^{2} \left(x - \log{\left(x \right)}\right)} + \frac{2}{x^{3}}}{x - \log{\left(x \right)}}$$
The graph
Derivative of (lnx+x)/(lnx-x)