log(x) + x ---------- log(x) - x
d /log(x) + x\ --|----------| dx\log(x) - x/
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
Apply the power rule: goes to
The derivative of is .
The result is:
To find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of is .
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 / 1\
1 + - |1 - -|*(log(x) + x)
x \ x/
---------- + --------------------
log(x) - x 2
(log(x) - x)
/ 2\
| / 1\ |
| 2*|1 - -| |
| 1 \ x/ |
(x + log(x))*|- -- + ----------| / 1\ / 1\
| 2 x - log(x)| 2*|1 + -|*|1 - -|
1 \ x / \ x/ \ x/
-- - -------------------------------- + -----------------
2 x - log(x) x - log(x)
x
---------------------------------------------------------
x - log(x)
/ / 3 \ / 2\\
| | / 1\ / 1\ | | / 1\ ||
| | 3*|1 - -| 3*|1 - -| | | 2*|1 - -| ||
| |1 \ x/ \ x/ | / 1\ | 1 \ x/ ||
| 2*(x + log(x))*|-- - ------------- + ---------------| / 1\ 3*|1 + -|*|- -- + ----------||
| | 3 2 2 | 3*|1 - -| \ x/ | 2 x - log(x)||
|2 \x (x - log(x)) x *(x - log(x))/ \ x/ \ x /|
-|-- + ----------------------------------------------------- + --------------- + -----------------------------|
| 3 x - log(x) 2 x - log(x) |
\x x *(x - log(x)) /
----------------------------------------------------------------------------------------------------------------
x - log(x)