log(x) + x ---------- log(x) - x
d /log(x) + x\ --|----------| dx\log(x) - x/
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
Apply the power rule: goes to
The derivative of is .
The result is:
To find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of is .
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 / 1\ 1 + - |1 - -|*(log(x) + x) x \ x/ ---------- + -------------------- log(x) - x 2 (log(x) - x)
/ 2\ | / 1\ | | 2*|1 - -| | | 1 \ x/ | (x + log(x))*|- -- + ----------| / 1\ / 1\ | 2 x - log(x)| 2*|1 + -|*|1 - -| 1 \ x / \ x/ \ x/ -- - -------------------------------- + ----------------- 2 x - log(x) x - log(x) x --------------------------------------------------------- x - log(x)
/ / 3 \ / 2\\ | | / 1\ / 1\ | | / 1\ || | | 3*|1 - -| 3*|1 - -| | | 2*|1 - -| || | |1 \ x/ \ x/ | / 1\ | 1 \ x/ || | 2*(x + log(x))*|-- - ------------- + ---------------| / 1\ 3*|1 + -|*|- -- + ----------|| | | 3 2 2 | 3*|1 - -| \ x/ | 2 x - log(x)|| |2 \x (x - log(x)) x *(x - log(x))/ \ x/ \ x /| -|-- + ----------------------------------------------------- + --------------- + -----------------------------| | 3 x - log(x) 2 x - log(x) | \x x *(x - log(x)) / ---------------------------------------------------------------------------------------------------------------- x - log(x)